Journal of International Obstetrics and Gynecology ›› 2021, Vol. 48 ›› Issue (6): 620-623.doi: 10.12280/gjfckx.20210097
• Research on Gynecological Malignancies:Review • Previous Articles Next Articles
Received:
2021-01-27
Published:
2021-12-15
Online:
2021-12-30
Contact:
WANG Xin-yu
E-mail:wangxy@zju.edu.cn
GU Xuan-yan, WANG Xin-yu. Research Progress of Long Non-Coding RNA HOTAIR in Cervical Cancer[J]. Journal of International Obstetrics and Gynecology, 2021, 48(6): 620-623.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer[J]. Lancet, 2019,393(10167):169-182. doi: 10.1016/S0140-6736(18)32470-X.
doi: S0140-6736(18)32470-X pmid: 30638582 |
[2] |
Tornesello ML, Faraonio R, Buonaguro L, et al. The Role of microRNAs, Long Non-coding RNAs, and Circular RNAs in Cervical Cancer[J]. Front Oncol, 2020,10:150. doi: 10.3389/fonc.2020.00150.
doi: 10.3389/fonc.2020.00150 pmid: 32154165 |
[3] |
Liu H, Liu J, Zhao G. Long non-coding RNA HOTAIR regulates proliferation, migration and invasion of human cervical cancer cells by modulating expression of MAPK1[J]. Arch Med Sci, 2020,16(5):1158-1165. doi: 10.5114/aoms.2019.83512.
doi: 10.5114/aoms.2019.83512 |
[4] |
Li N, Meng DD, Gao L, et al. Overexpression of HOTAIR leads to radioresistance of human cervical cancer via promoting HIF-1α expression[J]. Radiat Oncol, 2018,13(1):210. doi: 10.1186/s13014-018-1153-4.
doi: 10.1186/s13014-018-1153-4 |
[5] |
Zhang M, Song Y, Zhai F. ARFHPV E7 oncogene, lncRNA HOTAIR, miR-331-3p and its target, NRP2, form a negative feedback loop to regulate the apoptosis in the tumorigenesis in HPV positive cervical cancer[J]. J Cell Biochem, 2018,119(6):4397-4407. doi: 10.1002/jcb.26503.
doi: 10.1002/jcb.26503 pmid: 29130509 |
[6] |
Liu M, Jia J, Wang X, et al. Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p[J]. Cancer Biol Ther, 2018,19(5):391-399. doi: 10.1080/15384047.2018.1423921.
doi: 10.1080/15384047.2018.1423921 |
[7] |
Li Q, Feng Y, Chao X, et al. HOTAIR contributes to cell proliferation and metastasis of cervical cancer via targetting miR-23b/MAPK1 axis[J]. Biosci Rep, 2018,38(1):BSR20171563. doi: 10.1042/BSR20171563.
doi: 10.1042/BSR20171563 |
[8] |
Zong S, Liu X, Zhou N, et al. E2F7, EREG, miR-451a and miR-106b-5p are associated with the cervical cancer development[J]. Arch Gynecol Obstet, 2019,299(4):1089-1098. doi: 10.1007/s00404-018-5007-y.
doi: 10.1007/s00404-018-5007-y |
[9] |
Cáceres-Durán MÁ, Ribeiro-Dos-Santos Â, Vidal AF. Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer[J]. Int J Mol Sci, 2020,21(24):9742. doi: 10.3390/ijms21249742.
doi: 10.3390/ijms21249742 |
[10] |
Zheng P, Yin Z, Wu Y, et al. LncRNA HOTAIR promotes cell migration and invasion by regulating MKL1 via inhibition miR206 expression in HeLa cells[J]. Cell Commun Signal, 2018,16(1):5. doi: 10.1186/s12964-018-0216-3.
doi: 10.1186/s12964-018-0216-3 pmid: 29391067 |
[11] |
Cui J, Pan Y, Wang J, et al. MicroRNA-206 suppresses proliferation and predicts poor prognosis of HR-HPV-positive cervical cancer cells by targeting G6PD[J]. Oncol Lett, 2018,16(5):5946-5952. doi: 10.3892/ol.2018.9326.
doi: 10.3892/ol.2018.9326 |
[12] |
Ji F, Wuerkenbieke D, He Y, et al. Long Noncoding RNA HOTAIR: An Oncogene in Human Cervical Cancer Interacting With MicroRNA-17-5p[J]. Oncol Res, 2018,26(3):353-361. doi: 10.3727/096504017X15002869385155.
doi: 10.3727/096504017X15002869385155 |
[13] |
Aalijahan H, Ghorbian S. Long non-coding RNAs and cervical cancer[J]. Exp Mol Pathol, 2019,106:7-16. doi: 10.1016/j.yexmp.2018.11.010.
doi: S0014-4800(18)30168-0 pmid: 30471246 |
[14] |
沈宁梅, 江品平, 傅士龙. 长链非编码RNA及其相关信号通路在宫颈癌中的研究[J]. 国际妇产科学杂志, 2019,46(5):572-576. doi: 10.3969/j.issn.1674-1870.2019.05.023.
doi: 10.3969/j.issn.1674-1870.2019.05.023 |
[15] |
He J, Huang B, Zhang K, et al. Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity[J]. Biomed Pharmacother, 2020,127:110209. doi: 10.1016/j.biopha.2020.110209.
doi: 10.1016/j.biopha.2020.110209 |
[16] |
夏迪, 蒋子雯, 王慧霄, 等. HOTAIR对宫颈癌HeLa细胞增殖及自噬的影响[J]. 中国妇产科临床杂志, 2019,20(1):7-9. doi: 10.13390/j.issn.1672-1861.2019.01.003.
doi: 10.13390/j.issn.1672-1861.2019.01.003 |
[17] |
Salmerón-Bárcenas EG, Illades-Aguiar B, Del Moral-Hernández O, et al. HOTAIR Knockdown Decreased the Activity Wnt/β-Catenin Signaling Pathway and Increased the mRNA Levels of Its Negative Regulators in Hela Cells[J]. Cell Physiol Biochem, 2019,53(6):948-960. doi: 10.33594/000000188.
doi: 10.33594/000000188 pmid: 31820855 |
[18] |
Guo X, Xiao H, Guo S, et al. Long noncoding RNA HOTAIR knockdown inhibits autophagy and epithelial-mesenchymal transition through the Wnt signaling pathway in radioresistant human cervical cancer HeLa cells[J]. J Cell Physiol, 2019,234(4):3478-3489. doi: 10.1002/jcp.26828.
doi: 10.1002/jcp.26828 |
[19] |
傅培强, 王伟, 郝敏. 宫颈癌相关显著突变基因研究进展[J]. 国际妇产科学杂志, 2020,47(1):10-14. doi: 10.3969/j.issn.1674-1870.2020.01.002.
doi: 10.3969/j.issn.1674-1870.2020.01.002 |
[20] |
Jiang L, Hong L, Yang W, et al. Co-expression network analysis of the lncRNAs and mRNAs associated with cervical cancer progression[J]. Arch Med Sci, 2019,15(3):754-764. doi: 10.5114/aoms.2019.84740.
doi: 10.5114/aoms.2019.84740 pmid: 31110543 |
[21] |
Toy HI, Okmen D, Kontou PI, et al. HOTAIR as a Prognostic Predictor for Diverse Human Cancers: A Meta- and Bioinformatics Analysis[J]. Cancers (Basel), 2019,11(6):778. doi: 10.3390/cancers11060778.
doi: 10.3390/cancers11060778 |
[22] |
Barwal TS, Sharma U, Vasquez KM, et al. A panel of circulating long non-coding RNAs as liquid biopsy biomarkers for breast and cervical cancers[J]. Biochimie, 2020,176:62-70. doi: 10.1016/j.biochi.2020.06.012.
doi: 10.1016/j.biochi.2020.06.012 |
[23] |
Zhou YH, Cui YH, Wang T, et al. Long non-coding RNA HOTAIR in cervical cancer: Molecular marker, mechanistic insight, and therapeutic target[J]. Adv Clin Chem, 2020,97:117-140. doi: 10.1016/bs.acc.2019.12.004.
doi: 10.1016/bs.acc.2019.12.004 |
[24] |
Mao Y, Dong L, Zheng Y, et al. Prediction of Recurrence in Cervical Cancer Using a Nine-lncRNA Signature[J]. Front Genet, 2019,10:284. doi: 10.3389/fgene.2019.00284.
doi: 10.3389/fgene.2019.00284 pmid: 31001325 |
[25] |
Qin S, Gao Y, Yang Y, et al. Identifying Molecular Markers of Cervical Cancer Based on Competing Endogenous RNA Network Analysis[J]. Gynecol Obstet Invest, 2019,84(4):350-359. doi: 10.1159/000493476.
doi: 10.1159/000493476 |
[26] |
Moazeni-Roodi A, Aftabi S, Sarabandi S, et al. Genetic association between HOTAIR gene and the risk of cancer: an updated meta-analysis[J]. J Genet, 2020,99:48. doi: 10.1007/s12041-020-01214-w.
doi: 10.1007/s12041-020-01214-w |
[27] |
Jia MQ, Ren LL, Hu LM, et al. Association of long non-coding RNA HOTAIR and MALAT1 variants with cervical cancer risk in Han Chinese women[J]. J Biomed Res, 2019,33(5):308-316. doi: 10.7555/Jbr.33.20180096.
doi: 10.7555/Jbr.33.20180096 |
[1] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
[2] | CHEN Xiao-juan, ZHANG Yan-xin. A Case of Full-Term Delivery in A Pregnant Patient with Hemophilia A [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 158-160. |
[3] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[4] | GUO Jing, ZHANG Mao-xiang, ZHOU Chun-he, LIU Si-ning, LI Hui-yan. The Progress of Mendelian Randomization in the Study of the Causal Relationship between Exposure Factors and Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 169-174. |
[5] | CHAI Ling-na, LI Yan-li, SHI Jie, GAO Han, OUYANG Xi-yan, CHENG Shi-yu. Clinical Application of Indocyanine Green Tracing of Sentinel Lymph Nodes in Early Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 175-179. |
[6] | JIANG Ai-mei, ZHANG Xin-mei. Advances in the Treatment of Abdominal Wall Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 211-216. |
[7] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[8] | HOU Chun-yan, DU Xiu-ping. Two Cases of Spontaneous Uterine Rupture in the Middle and Late Stages of Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 110-113. |
[9] | ZHONG Pei-qu, ZHAO Li-jian, ZOU Xin-xin. A Case of Rudimentary Horn Pregnancy Undergoing Expectant Treatment until the Third Trimester [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 114-116. |
[10] | HU Ming-zhu, LIU Li-wen, HUANG Lei. The Relationship between Vaginal Microecology and Cervical Cancer in HIV-Infected Women [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 13-18. |
[11] | PAN Qi, FENG Tong-fu, JIN Jing, WU Ying, DU Xin. Laparoscopic Resection of Giant Mature Retroperitoneal Teratoma in An Adult: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 28-31. |
[12] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[13] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[14] | SHI Bai-chao, WANG Yu, CHANG Hui, LU Feng-juan, GUAN Mu-xin, YU Jian-nan, WU Xiao-ke. Mechanism of Traditional Chinese Medicine and Natural Products in Improving Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 66-71. |
[15] | LI Heng-bing, YUAN Hai-ning, ZHANG Yun-jie, ZHANG Jiang-lin, GUO Zi-zhen, SUN Zhen-gao. Advances in Exosome-Based Therapy for Chronic Endometritis by Modulating the Immune Microenvironment [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||