Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (1): 30-34.doi: 10.12280/gjfckx.20220376
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
Received:
2022-05-16
Published:
2023-02-15
Online:
2023-03-02
Contact:
LIU Zhao-hui, E-mail: ZHANG Zhan, LIU Zhao-hui. Role of STING Signaling Pathway in HPV-Related Malignant Tumors[J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 30-34.
Add to citation manager EndNote|Ris|BibTeX
[1] |
White MK, Pagano JS, Khalili K. Viruses and human cancers: a long road of discovery of molecular paradigms[J]. Clin Microbiol Rev, 2014, 27(3):463-481. doi: 10.1128/CMR.00124-13.
doi: 10.1128/CMR.00124-13 pmid: 24982317 |
[2] |
Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors[J]. Front Oncol, 2019, 9:713. doi: 10.3389/fonc.2019.00713.
doi: 10.3389/fonc.2019.00713 pmid: 31448229 |
[3] |
Guven-Maiorov E, Tsai CJ, Nussinov R. Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry[J]. Front Oncol, 2019, 9:1236. doi: 10.3389/fonc.2019.01236.
doi: 10.3389/fonc.2019.01236 pmid: 31803618 |
[4] |
Dagenais-Lussier X, Loucif H, Murira A, et al. Sustained IFN-I Expression during Established Persistent Viral Infection: A "Bad Seed" for Protective Immunity[J]. Viruses, 2017, 10(1):12. doi: 10.3390/v10010012.
doi: 10.3390/v10010012 |
[5] |
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity[J]. Nature, 2009, 461(7265):788-792. doi: 10.1038/nature08476.
doi: 10.1038/nature08476 |
[6] |
Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5):830-842. doi: 10.1016/j.immuni.2014.10.017.
doi: 10.1016/j.immuni.2014.10.017 |
[7] |
Chan CK, Aimagambetova G, Ukybassova T, et al. Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination-Review of Current Perspectives[J]. J Oncol, 2019, 2019:3257939. doi: 10.1155/2019/3257939.
doi: 10.1155/2019/3257939 |
[8] |
Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy[J]. Front Microbiol, 2019, 10:3116. doi: 10.3389/fmicb.2019.03116.
doi: 10.3389/fmicb.2019.03116 pmid: 32038557 |
[9] |
Baird JR, Feng Z, Xiao HD, et al. STING expression and response to treatment with STING ligands in premalignant and malignant disease[J]. PLoS One, 2017, 12(11):e0187532. doi: 10.1371/journal.pone.0187532.
doi: 10.1371/journal.pone.0187532 |
[10] |
Kol A, Lubbers JM, Terwindt A, et al. Combined STING levels and CD103+ T cell infiltration have significant prognostic implications for patients with cervical cancer[J]. Oncoimmunology, 2021, 10(1):1936391. doi: 10.1080/2162402X.2021.1936391.
doi: 10.1080/2162402X.2021.1936391 |
[11] |
Zhou C, Tuong ZK, Frazer IH. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System[J]. Front Oncol, 2019, 9:682. doi: 10.3389/fonc.2019.00682.
doi: 10.3389/fonc.2019.00682 pmid: 31428574 |
[12] |
Lo Cigno I, Calati F, Albertini S, et al. Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins[J]. Pathogens, 2020, 9(4):292. doi: 10.3390/pathogens9040292.
doi: 10.3390/pathogens9040292 |
[13] |
Lau L, Gray EE, Brunette RL, et al. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway[J]. Science, 2015, 350(6260):568-571. doi: 10.1126/science.aab3291.
doi: 10.1126/science.aab3291 pmid: 26405230 |
[14] |
Shaikh MH, Bortnik V, McMillan NA, et al. cGAS-STING responses are dampened in high-risk HPV type 16 positive head and neck squamous cell carcinoma cells[J]. Microb Pathog, 2019, 132:162-165. doi: 10.1016/j.micpath.2019.05.004.
doi: 10.1016/j.micpath.2019.05.004 |
[15] |
Bortnik V, Wu M, Julcher B, et al. Loss of HPV type 16 E7 restores cGAS-STING responses in human papilloma virus-positive oropharyngeal squamous cell carcinomas cells[J]. J Microbiol Immunol Infect, 2021, 54(4):733-739. doi: 10.1016/j.jmii.2020.07.010.
doi: 10.1016/j.jmii.2020.07.010 |
[16] |
Prabakaran T, Bodda C, Krapp C, et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1[J]. EMBO J, 2018, 37(8):e97858. doi: 10.15252/embj.201797858.
doi: 10.15252/embj.201797858 |
[17] |
Luo X, Donnelly CR, Gong W, et al. HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING[J]. J Clin Invest, 2020, 130(4):1635-1652. doi: 10.1172/JCI129497.
doi: 10.1172/JCI129497 pmid: 31874109 |
[18] |
Tan YS, Sansanaphongpricha K, Xie Y, et al. Mitigating SOX2-potentiated Immune Escape of Head and Neck Squamous Cell Carcinoma with a STING-inducing Nanosatellite Vaccine[J]. Clin Cancer Res, 2018, 24(17):4242-4255. doi: 10.1158/1078-0432.CCR-17-2807.
doi: 10.1158/1078-0432.CCR-17-2807 pmid: 29769207 |
[19] |
Wuebben EL, Rizzino A. The dark side of SOX2: cancer-a comprehensive overview[J]. Oncotarget, 2017, 8(27):44917-44943. doi: 10.18632/oncotarget.16570.
doi: 10.18632/oncotarget.16570 pmid: 28388544 |
[20] |
Konno H, Yamauchi S, Berglund A, et al. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production[J]. Oncogene, 2018, 37(15):2037-2051. doi: 10.1038/s41388-017-0120-0.
doi: 10.1038/s41388-017-0120-0 pmid: 29367762 |
[21] |
Lo Cigno I, Calati F, Borgogna C, et al. Human Papillomavirus E7 Oncoprotein Subverts Host Innate Immunity via SUV39H1-Mediated Epigenetic Silencing of Immune Sensor Genes[J]. J Virol, 2020, 94(4):e01812-e01819. doi: 10.1128/JVI.01812-19.
doi: 10.1128/JVI.01812-19 |
[22] |
Lu S, Concha-Benavente F, Shayan G, et al. STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV+ status in head and neck cancer[J]. Oral Oncol, 2018, 78:186-193. doi: 10.1016/j.oraloncology.2018.01.019.
doi: 10.1016/j.oraloncology.2018.01.019 |
[23] |
Zhu Y, An X, Zhang X, et al. STING: a master regulator in the cancer-immunity cycle[J]. Mol Cancer, 2019, 18(1):152. doi: 10.1186/s12943-019-1087-y.
doi: 10.1186/s12943-019-1087-y pmid: 31679519 |
[24] |
Dahal LN, Dou L, Hussain K, et al. STING Activation Reverses Lymphoma-Mediated Resistance to Antibody Immunotherapy[J]. Cancer Res, 2017, 77(13):3619-3631. doi: 10.1158/0008-5472.CAN-16-2784.
doi: 10.1158/0008-5472.CAN-16-2784 pmid: 28512240 |
[25] |
Blitzer GC, Smith MA, Harris SL, et al. Review of the clinical and biologic aspects of human papillomavirus-positive squamous cell carcinomas of the head and neck[J]. Int J Radiat Oncol Biol Phys, 2014, 88(4):761-770. doi: 10.1016/j.ijrobp.2013.08.029.
doi: 10.1016/j.ijrobp.2013.08.029 |
[26] |
Oguejiofor K, Hall J, Slater C, et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma[J]. Br J Cancer, 2015, 113(6):886-893. doi: 10.1038/bjc.2015.277.
doi: 10.1038/bjc.2015.277 |
[27] |
Cohen E, Soulières D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study[J]. Lancet, 2019, 393(10167):156-167. doi: 10.1016/S0140-6736(18)31999-8.
doi: S0140-6736(18)31999-8 pmid: 30509740 |
[28] |
Fessas P, Lee H, Ikemizu S, et al. A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab[J]. Semin Oncol, 2017, 44(2):136-140. doi: 10.1053/j.seminoncol.2017.06.002.
doi: S0093-7754(17)30055-6 pmid: 28923212 |
[29] |
Cui P, Li R, Huang Z, et al. Comparative effectiveness of pembrolizumab vs. nivolumab in patients with recurrent or advanced NSCLC[J]. Sci Rep, 2020, 10(1):13160. doi: 10.1038/s41598-020-70207-7.
doi: 10.1038/s41598-020-70207-7 pmid: 32753702 |
[30] |
Terawaki S, Chikuma S, Shibayama S, et al. IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity[J]. J Immunol, 2011, 186(5):2772-2779. doi: 10.4049/jimmunol.1003208.
doi: 10.4049/jimmunol.1003208 pmid: 21263073 |
[31] |
Motedayen Aval L, Pease JE, Sharma R, et al. Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy[J]. J Clin Med, 2020, 9(10):3323. doi: 10.3390/jcm9103323.
doi: 10.3390/jcm9103323 |
[32] |
Shi F, Su J, Wang J, et al. Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response[J]. Mol Cell Biochem, 2021, 476(2):1015-1024. doi: 10.1007/s11010-020-03967-5.
doi: 10.1007/s11010-020-03967-5 pmid: 33141310 |
[33] |
Pelster MS, Amaria RN. Combined targeted therapy and immunotherapy in melanoma: a review of the impact on the tumor microenvironment and outcomes of early clinical trials[J]. Ther Adv Med Oncol, 2019, 11:1758835919830826. doi: 10.1177/1758835919830826.
doi: 10.1177/1758835919830826 |
[34] | Baird J, Dietsh G, Florio V, et al. MV-626, a potent and selective inhibitor of ENPP1 enhances STING activation and augments T-cell mediated anti-tumor activity in vivo[C/OL]. Milwaukee(WI):SITC, 2018:Posters 7. https://digitalcommons.psjhealth.org/sitc2018/7. |
[35] |
Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506):eaba6098. doi: 10.1126/science.aba6098.
doi: 10.1126/science.aba6098 |
[36] |
Wehbe M, Wang-Bishop L, Becker KW, et al. Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration[J]. J Control Release, 2021, 330:1118-1129. doi: 10.1016/j.jconrel.2020.11.017.
doi: 10.1016/j.jconrel.2020.11.017 |
[37] |
Lubbers JM, Koopman B, de Klerk-Sluis JM, et al. Association of homozygous variants of STING1 with outcome in human cervical cancer[J]. Cancer Sci, 2021, 112(1):61-71. doi: 10.1111/cas.14680.
doi: 10.1111/cas.14680 |
[1] | HOU Chun-yan, DU Xiu-ping, WANG Hong-hong, HOU Yue-yang. Advances in the Pathogenesis of Fetal Growth Restriction by HMGA2 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 127-131. |
[2] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[3] | GUO Jing, ZHANG Mao-xiang, ZHOU Chun-he, LIU Si-ning, LI Hui-yan. The Progress of Mendelian Randomization in the Study of the Causal Relationship between Exposure Factors and Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 169-174. |
[4] | CHAI Ling-na, LI Yan-li, SHI Jie, GAO Han, OUYANG Xi-yan, CHENG Shi-yu. Clinical Application of Indocyanine Green Tracing of Sentinel Lymph Nodes in Early Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 175-179. |
[5] | YIN Yu-xin, WANG Chang-he. A Case Report of Deep Aggressive Angiomyxoma of Female Pelvis in An Elderly Female [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 191-194. |
[6] | WANG Jia-li, MA Guo-xia, WEI Jia, LIU Si-min, YANG Yong-xiu. T-Lymphoblastic Lymphoma of Reproductive System: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 195-199. |
[7] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[8] | HU Ming-zhu, LIU Li-wen, HUANG Lei. The Relationship between Vaginal Microecology and Cervical Cancer in HIV-Infected Women [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 13-18. |
[9] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[10] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[11] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[12] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[13] | LUO Na, CHEN Yan. A Case of Recurrent Uterine Smooth Muscle Tumor of Uncertain Malignant Potential Underwent Hysterectomy after Hysteroscopic Lesion Resection [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 42-45. |
[14] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
[15] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||