Journal of International Obstetrics and Gynecology ›› 2024, Vol. 51 ›› Issue (3): 290-296.doi: 10.12280/gjfckx.20231104
• Gynecological Diseases & Related Research: Review • Previous Articles Next Articles
SHI Ming, SUN Ming-hui, YANG Wei-wei, HUANG Hui-hua, ZHANG Chang-lin, David YB Deng△()
Received:
2023-12-28
Published:
2024-06-15
Online:
2024-06-25
Contact:
David YB Deng
E-mail:dengyub@mail.sysu.edu.cn
SHI Ming, SUN Ming-hui, YANG Wei-wei, HUANG Hui-hua, ZHANG Chang-lin, David YB Deng. Application of 3D Printed Hydrogel Stents in Prevention and Treatment of Intrauterine Adhesion[J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 290-296.
Add to citation manager EndNote|Ris|BibTeX
序号 | 水凝胶材料 | 参数 | 优点 | 缺点 |
---|---|---|---|---|
1 | GelMA、SA[ | 10%GelMA,2%SA,1%光引发剂 | 多孔性、可压缩性高、生物相容性高 | GelMA体内降解较慢、单独支架促修复效果有限 |
2 | Gel、SA[ | 20%Gel和4%SA,2∶1体积比,4度打印,10%氯化钙交联 | 可在体外体内长期支持负载细胞的活性,体内可自然降解,生物相容性高 | 人的诱导性多能干细胞移植到大鼠存在免疫反应,子宫内膜修复疗效有限 |
3 | 自交联HA[ | 5 mg/mL | 为UC-MSCs移植提供载体,防止细胞流出,提供物理支持 | 单独支架移植未改善恒河猴的宫腔形态及月经周期 |
5 | Ⅰ型胶原蛋白[ | 0.5%胶原冻干,105 ℃热脱水15 h | 具有细胞外基质同样的纤维结构、具有多孔结构,适合MSCs的负载黏附和营养支持 | 需要和干细胞联合使用才能达到促修复和改善妊娠效果 |
6 | 壳聚糖[ | 2%壳聚糖/乙酸溶液3 mL加入1.5 mL交联液,搅拌15 min,37 ℃交联形成水凝胶 | 生物相容性高,具备抗菌性能,稳定性高 | 制备过程较为复杂,氨基成分易被化学修饰,机械强度弱 |
序号 | 水凝胶材料 | 参数 | 优点 | 缺点 |
---|---|---|---|---|
1 | GelMA、SA[ | 10%GelMA,2%SA,1%光引发剂 | 多孔性、可压缩性高、生物相容性高 | GelMA体内降解较慢、单独支架促修复效果有限 |
2 | Gel、SA[ | 20%Gel和4%SA,2∶1体积比,4度打印,10%氯化钙交联 | 可在体外体内长期支持负载细胞的活性,体内可自然降解,生物相容性高 | 人的诱导性多能干细胞移植到大鼠存在免疫反应,子宫内膜修复疗效有限 |
3 | 自交联HA[ | 5 mg/mL | 为UC-MSCs移植提供载体,防止细胞流出,提供物理支持 | 单独支架移植未改善恒河猴的宫腔形态及月经周期 |
5 | Ⅰ型胶原蛋白[ | 0.5%胶原冻干,105 ℃热脱水15 h | 具有细胞外基质同样的纤维结构、具有多孔结构,适合MSCs的负载黏附和营养支持 | 需要和干细胞联合使用才能达到促修复和改善妊娠效果 |
6 | 壳聚糖[ | 2%壳聚糖/乙酸溶液3 mL加入1.5 mL交联液,搅拌15 min,37 ℃交联形成水凝胶 | 生物相容性高,具备抗菌性能,稳定性高 | 制备过程较为复杂,氨基成分易被化学修饰,机械强度弱 |
[1] | Hooker AB, de Leeuw RA, Twisk J, et al. Reproductive performance of women with and without intrauterine adhesions following recurrent dilatation and curettage for miscarriage: long-term follow-up of a randomized controlled trial[J]. Hum Reprod, 2021, 36(1):70-81. doi: 10.1093/humrep/deaa289. |
[2] | Lee WL, Liu CH, Cheng M, et al. Focus on the Primary Prevention of Intrauterine Adhesions: Current Concept and Vision[J]. Int J Mol Sci, 2021, 22(10):5175. doi: 10.3390/ijms22105175. |
[3] |
Qiao J, Wang Y, Li X, et al. A Lancet Commission on 70 years of women′s reproductive, maternal, newborn, child, and adolescent health in China[J]. Lancet, 2021, 397(10293):2497-2536. doi: 10.1016/S0140-6736(20)32708-2.
pmid: 34043953 |
[4] | Trinh TT, Nguyen KD, Pham HV, et al. Effectiveness of Hyaluronic Acid Gel and Intrauterine Devices in Prevention of Intrauterine Adhesions after Hysteroscopic Adhesiolysis in Infertile Women[J]. J Minim Invasive Gynecol, 2022, 29(2):284-290. doi: 10.1016/j.jmig.2021.08.010. |
[5] | Song YT, Liu PC, Tan J, et al. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury[J]. Stem Cell Res Ther, 2021, 12(1):556. doi: 10.1186/s13287-021-02620-2. |
[6] | Abudukeyoumu A, Li MQ, Xie F. Transforming growth factor-β1 in intrauterine adhesion[J]. Am J Reprod Immunol, 2020, 84(2):e13262. doi: 10.1111/aji.13262. |
[7] | Rajabi N, Rezaei A, Kharaziha M, et al. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair[J]. Tissue Eng Part A, 2021, 27(11/12):679-702. doi: 10.1089/ten.TEA.2020.0350. |
[8] | Janarthanan G, Kim JH, Kim I, et al. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications[J]. Biofabrication, 2022 May 31;14(3). doi: 10.1088/1758-5090/ac6c4c. |
[9] |
Cai Y, Wu F, Yu Y, et al. Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion[J]. Acta Biomater, 2019, 84:222-230. doi: 10.1016/j.actbio.2018.11.016.
pmid: 30476581 |
[10] |
Ji W, Hou B, Lin W, et al. 3D Bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium[J]. Acta Biomater, 2020, 116:268-284. doi: 10.1016/j.actbio.2020.09.012.
pmid: 32911103 |
[11] | Wang L, Yu C, Chang T, et al. In situ repair abilities of human umbilical cord-derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion[J]. Sci Adv, 2020, 6(21):eaba6357. doi: 10.1126/sciadv.aba6357. |
[12] |
Xin L, Lin X, Pan Y, et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility[J]. Acta Biomater, 2019, 92:160-171. doi: 10.1016/j.actbio.2019.05.012.
pmid: 31075515 |
[13] |
Wenbo Q, Lijian X, Shuangdan Z, et al. Controlled releasing of SDF-1α in chitosan-heparin hydrogel for endometrium injury healing in rat model[J]. Int J Biol Macromol, 2020, 143:163-172. doi: 10.1016/j.ijbiomac.2019.11.184.
pmid: 31765745 |
[14] |
Xu T, Jin J, Gregory C, et al. Inkjet printing of viable mammalian cells[J]. Biomaterials, 2005, 26(1):93-99. doi: 10.1016/j.biomaterials.2004.04.011.
pmid: 15193884 |
[15] | Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020,226:119536. doi: 10.1016/j.biomaterials.2019.119536. |
[16] |
Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050.
pmid: 20478613 |
[17] | Wen J, Hou B, Lin W, et al. 3D-printed hydrogel scaffold-loaded granulocyte colony-stimulating factor sustained-release microspheres and their effect on endometrial regeneration[J]. Biomater Sci, 2022, 10(12):3346-3358. doi: 10.1039/d2bm00109h. |
[18] | Min J, Lu N, Huang S, et al. Phenotype and biological characteristics of endometrial mesenchymal stem/stromal cells: A comparison between intrauterine adhesion patients and healthy women[J]. Am J Reprod Immunol, 2021, 85(6):e13379. doi: 10.1111/aji.13379. |
[19] |
Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis[J]. Stem Cell Res Ther, 2020, 11(1):336. doi: 10.1186/s13287-020-01852-y.
pmid: 32746936 |
[20] |
Gargett CE, Ye L. Endometrial reconstruction from stem cells[J]. Fertil Steril, 2012, 98(1):11-20. doi: 10.1016/j.fertnstert.2012.05.004.
pmid: 22657248 |
[21] | Zheng JH, Zhang JK, Kong DS, et al. Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat[J]. Stem Cell Res Ther, 2020, 11(1):280. doi: 10.1186/s13287-020-01806-4. |
[22] |
Xu L, Ding L, Wang L, et al. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars[J]. Stem Cell Res Ther, 2017, 8(1):84. doi: 10.1186/s13287-017-0535-0.
pmid: 28420433 |
[23] | Cao Y, Sun H, Zhu H, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phaseⅠclinical trial[J]. Stem Cell Res Ther, 2018, 9(1):192. doi: 10.1186/s13287-018-0904-3. |
[24] | Wei X, Liu F, Zhang S, et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Conditioned Medium Promotes Human Endometrial Cell Proliferation through Wnt/β-Catenin Signaling[J]. Biomed Res Int, 2022,2022:8796093. doi: 10.1155/2022/8796093. |
[25] | Zhao YX, Chen SR, Huang QY, et al. Repair abilities of mouse autologous adipose-derived stem cells and ShakeGelTM3D complex local injection with intrauterine adhesion by BMP7-Smad5 signaling pathway activation[J]. Stem Cell Res Ther, 2021, 12(1):191. doi: 10.1186/s13287-021-02258-0. |
[26] | Fonseca AC, Melchels F, Ferreira M, et al. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine[J]. Chem Rev, 2020, 120(19):11128-11174. doi: 10.1021/acs.chemrev.0c00342. |
[27] |
Feng M, Hu S, Qin W, et al. Bioprinting of a Blue Light-Cross-Linked Biodegradable Hydrogel Encapsulating Amniotic Mesenchymal Stem Cells for Intrauterine Adhesion Prevention[J]. ACS Omega, 2021, 6(36):23067-23075. doi: 10.1021/acsomega.1c02117.
pmid: 34549107 |
[28] | Lu S, Wang XC, Li WZ, et al. Injectable 3D-Printed Porous Scaffolds for Adipose Stem Cell Delivery and Endometrial Regeneration[J]. Adv Funct Mater, 2023, 33(34):2303368. doi: 10.1002/adfm.202303368. |
[29] |
Ma T, Fu B, Yang X, et al. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing[J]. J Cell Biochem, 2019, 120(6):10847-10854. doi: 10.1002/jcb.28376.
pmid: 30681184 |
[30] | Chang CL, Sung PH, Chen KH, et al. Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome[J]. Am J Transl Res, 2018, 10(4):1053-1070. |
[31] |
Li J, Du S, Sheng X, et al. MicroRNA-29b Inhibits Endometrial Fibrosis by Regulating the Sp1-TGF-β1/Smad-CTGF Axis in a Rat Model[J]. Reprod Sci, 2016, 23(3):386-394. doi: 10.1177/1933719115602768.
pmid: 26392347 |
[32] |
Liu Y, Zhang S, Xue Z, et al. Bone mesenchymal stem cells-derived miR-223-3p-containing exosomes ameliorate lipopolysaccharide-induced acute uterine injury via interacting with endothelial progenitor cells[J]. Bioengineered, 2021, 12(2):10654-10665. doi: 10.1080/21655979.2021.2001185.
pmid: 34738867 |
[33] |
Zhao S, Qi W, Zheng J, et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Restore Functional Endometrium in a Rat Model of Intrauterine Adhesions[J]. Reprod Sci, 2020, 27(6):1266-1275. doi: 10.1007/s43032-019-00112-6.
pmid: 31933162 |
[34] |
Ebrahim N, Mostafa O, El Dosoky RE, et al. Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model[J]. Stem Cell Res Ther, 2018, 9(1):175. doi: 10.1186/s13287-018-0924-z.
pmid: 29954457 |
[1] | CHEN Xiao-juan, ZHANG Yan-xin. A Case of Full-Term Delivery in A Pregnant Patient with Hemophilia A [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 158-160. |
[2] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[3] | JIANG Ai-mei, ZHANG Xin-mei. Advances in the Treatment of Abdominal Wall Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 211-216. |
[4] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[5] | HOU Chun-yan, DU Xiu-ping. Two Cases of Spontaneous Uterine Rupture in the Middle and Late Stages of Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 110-113. |
[6] | ZHONG Pei-qu, ZHAO Li-jian, ZOU Xin-xin. A Case of Rudimentary Horn Pregnancy Undergoing Expectant Treatment until the Third Trimester [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 114-116. |
[7] | PAN Qi, FENG Tong-fu, JIN Jing, WU Ying, DU Xin. Laparoscopic Resection of Giant Mature Retroperitoneal Teratoma in An Adult: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 28-31. |
[8] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[9] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[10] | SHI Bai-chao, WANG Yu, CHANG Hui, LU Feng-juan, GUAN Mu-xin, YU Jian-nan, WU Xiao-ke. Mechanism of Traditional Chinese Medicine and Natural Products in Improving Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 66-71. |
[11] | LI Heng-bing, YUAN Hai-ning, ZHANG Yun-jie, ZHANG Jiang-lin, GUO Zi-zhen, SUN Zhen-gao. Advances in Exosome-Based Therapy for Chronic Endometritis by Modulating the Immune Microenvironment [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 72-78. |
[12] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
[13] | XI Xin-xin, GUO Hong, LI Shan, FENG Di, LIU Duo-duo. Effect of Preoperative Oral Carbohydrate on Enhanced Recovery after Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 616-619. |
[14] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[15] | HUANG Chu-bing, GUO Chun, ZHENG Jia-yi, LIU Wei. Hyperlipidemia-Induced Acute Pancreatitis in Pregnancy: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 636-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||