
Journal of International Obstetrics and Gynecology ›› 2025, Vol. 52 ›› Issue (6): 690-695.doi: 10.12280/gjfckx.20250857
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
XIE Jiu-mei, WANG Yu, CHEN Xiang-nan, ZHANG Li-qian, WU Xiao-ke(
)
Received:2025-07-31
Published:2025-12-15
Online:2025-12-30
Contact:
WU Xiao-ke
E-mail:xiaokewu2002@vip.sina.com
XIE Jiu-mei, WANG Yu, CHEN Xiang-nan, ZHANG Li-qian, WU Xiao-ke. Research Progress on the Intervention of Ovarian Cancer by Chinese Medicine Monomers and Compounds through Regulating the NF-κB Signaling Pathway[J]. Journal of International Obstetrics and Gynecology, 2025, 52(6): 690-695.
Add to citation manager EndNote|Ris|BibTeX
| 分类 | 中药单体 | 细胞模型 | 分子机制 | 作用 | 参考文献 |
|---|---|---|---|---|---|
| 黄酮类 | 淫羊藿苷 | SKOV3细胞 | PI3K-Akt/NF-κB信号通路↓,Bax、Caspase-3↑ | 促进细胞凋亡 | [ |
| 豆蔻素 | SKOV3细胞 | NF-κB和mTOR通路↓,Mcl-1、Bcl-2↓,Bax、cyt c和Caspase-3↑ | 促进细胞凋亡、抑制细胞生长、增殖、阻滞G2/M期 | [ | |
| 黄芩苷 | ID8细胞 | Bax、cleaved Caspase-3↑,Bcl-2↓,p-IκBα、NF-κB p65↓ | 抑制细胞增殖、迁移、侵袭,诱导细胞凋亡、阻滞G2/M期 | [ | |
| 醌类 | 胡桃醌 | SKOV3细胞 | E-cadherin↑,N-cadherin、Snail、NF-κB p65↓ | 抑制细胞EMT、抑制迁移 | [ |
| 丹参酮ⅡA | - | NF-κB p65↓,Caspase-3↑ | 促进细胞凋亡 | [ | |
| 萜类 | 雷公藤红素 | OVCAR3和SKOV3细胞 | IκBα磷酸化↓,IκBα降解↓,p65↓,NF-κB通路↓,MMP-9↓ | 抑制肿瘤细胞迁移和侵袭 | [ |
| 芍药内酯苷 | SKOV3细胞 | CDH1↑,CDH2、NF-κB↓ | 抑制细胞迁移、诱导细胞凋亡 | [ | |
| 多酚类 | 姜黄素 | SKOV3细胞 | NF-κB/PRL-3通路↓,TNF-α、IL-6↓,Cyclin E1、Cyclin A1↓,EMT↓ | 抑制细胞炎症反应、增殖和迁移 | [ |
| 姜黄素 | SKOV3细胞 | EGR1↑,SNIP1↑,NF-κB通路↓,Bcl-2、Mcl-1↓ | 诱导细胞凋亡、降低紫杉醇耐药 | [ | |
| 皂苷类 | 重楼皂苷E | OVCAR3和SKOV3细胞 | Akt/NF-κB信号通路↓,MMP-2、MMP-9↓ | 抑制细胞的增殖、迁移和侵袭 | [ |
| 人参皂苷Rg3 | SKOV3和A2780细胞 | NF-κB p65磷酸化↓,KIF20A表达↓,CDC25A蛋白↓ | 抑制细胞增殖和侵袭、阻滞G1/S期和G2/M期 | [ | |
| 多糖类 | 虎杖多糖 | SKOV3细胞 | p65↓ | 抑制细胞增殖、促进细胞凋亡 | [ |
| 环烯醚 萜苷类 | 马鞭草色苷 | SKOV3和A2780细胞 | CCN1↓,Akt/NF-κB通路↓,M1型巨噬细胞极化↑ | 抑制细胞增殖和迁移、促进细胞凋亡 | [ |
| 生物碱类 | 苦参碱 | Caov-3细胞 | PCNA、p-IκBα、p-NF-κB p65↓,PARP↑ | 抑制细胞增殖、诱导细胞凋亡 | [ |
| 分类 | 中药单体 | 细胞模型 | 分子机制 | 作用 | 参考文献 |
|---|---|---|---|---|---|
| 黄酮类 | 淫羊藿苷 | SKOV3细胞 | PI3K-Akt/NF-κB信号通路↓,Bax、Caspase-3↑ | 促进细胞凋亡 | [ |
| 豆蔻素 | SKOV3细胞 | NF-κB和mTOR通路↓,Mcl-1、Bcl-2↓,Bax、cyt c和Caspase-3↑ | 促进细胞凋亡、抑制细胞生长、增殖、阻滞G2/M期 | [ | |
| 黄芩苷 | ID8细胞 | Bax、cleaved Caspase-3↑,Bcl-2↓,p-IκBα、NF-κB p65↓ | 抑制细胞增殖、迁移、侵袭,诱导细胞凋亡、阻滞G2/M期 | [ | |
| 醌类 | 胡桃醌 | SKOV3细胞 | E-cadherin↑,N-cadherin、Snail、NF-κB p65↓ | 抑制细胞EMT、抑制迁移 | [ |
| 丹参酮ⅡA | - | NF-κB p65↓,Caspase-3↑ | 促进细胞凋亡 | [ | |
| 萜类 | 雷公藤红素 | OVCAR3和SKOV3细胞 | IκBα磷酸化↓,IκBα降解↓,p65↓,NF-κB通路↓,MMP-9↓ | 抑制肿瘤细胞迁移和侵袭 | [ |
| 芍药内酯苷 | SKOV3细胞 | CDH1↑,CDH2、NF-κB↓ | 抑制细胞迁移、诱导细胞凋亡 | [ | |
| 多酚类 | 姜黄素 | SKOV3细胞 | NF-κB/PRL-3通路↓,TNF-α、IL-6↓,Cyclin E1、Cyclin A1↓,EMT↓ | 抑制细胞炎症反应、增殖和迁移 | [ |
| 姜黄素 | SKOV3细胞 | EGR1↑,SNIP1↑,NF-κB通路↓,Bcl-2、Mcl-1↓ | 诱导细胞凋亡、降低紫杉醇耐药 | [ | |
| 皂苷类 | 重楼皂苷E | OVCAR3和SKOV3细胞 | Akt/NF-κB信号通路↓,MMP-2、MMP-9↓ | 抑制细胞的增殖、迁移和侵袭 | [ |
| 人参皂苷Rg3 | SKOV3和A2780细胞 | NF-κB p65磷酸化↓,KIF20A表达↓,CDC25A蛋白↓ | 抑制细胞增殖和侵袭、阻滞G1/S期和G2/M期 | [ | |
| 多糖类 | 虎杖多糖 | SKOV3细胞 | p65↓ | 抑制细胞增殖、促进细胞凋亡 | [ |
| 环烯醚 萜苷类 | 马鞭草色苷 | SKOV3和A2780细胞 | CCN1↓,Akt/NF-κB通路↓,M1型巨噬细胞极化↑ | 抑制细胞增殖和迁移、促进细胞凋亡 | [ |
| 生物碱类 | 苦参碱 | Caov-3细胞 | PCNA、p-IκBα、p-NF-κB p65↓,PARP↑ | 抑制细胞增殖、诱导细胞凋亡 | [ |
| 中药复方 | 细胞模型 | 分子机制 | 作用 | 参考文献 |
|---|---|---|---|---|
| 扶正解毒汤 | SKOV3和OVCAR3细胞 | PI3K/Akt/mTOR/NF-κB信号通路↓,p38信号通路↓,Bax、cyt-c、cleaved Caspase-3↑,Bcl-2↓ | 促进细胞凋亡、抑制增殖、迁移和侵袭 | [ |
| 桂枝茯苓胶囊 | SKOV3细胞 | CDH2、NF-κB↓,Caspase-3、CDH1↑ | 抑制细胞迁移、促进细胞凋亡 | [ |
| 理冲生髓饮 | SKOV3细胞 | TNF-α、IL-1β、IL-8、TRIM44、IKKβ、NF-κB p65、Bcl-2、MMP-9↓,IκBα、Caspase-3↑ | 抑制细胞增殖、侵袭、转移,促进细胞凋亡,增强化疗药物作用 | [ |
| 中药复方 | 细胞模型 | 分子机制 | 作用 | 参考文献 |
|---|---|---|---|---|
| 扶正解毒汤 | SKOV3和OVCAR3细胞 | PI3K/Akt/mTOR/NF-κB信号通路↓,p38信号通路↓,Bax、cyt-c、cleaved Caspase-3↑,Bcl-2↓ | 促进细胞凋亡、抑制增殖、迁移和侵袭 | [ |
| 桂枝茯苓胶囊 | SKOV3细胞 | CDH2、NF-κB↓,Caspase-3、CDH1↑ | 抑制细胞迁移、促进细胞凋亡 | [ |
| 理冲生髓饮 | SKOV3细胞 | TNF-α、IL-1β、IL-8、TRIM44、IKKβ、NF-κB p65、Bcl-2、MMP-9↓,IκBα、Caspase-3↑ | 抑制细胞增殖、侵袭、转移,促进细胞凋亡,增强化疗药物作用 | [ |
| [1] | Zhuang Q, Gu G, Chen J, et al. Global, regional, and national burden of ovarian cancer among young women during 1990 — 2019[J]. Eur J Cancer Prev, 2025, 34(1):1-10. doi: 10.1097/CEJ.0000000000000899. |
| [2] | Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025[J]. CA Cancer J Clin, 2025, 75(1):10-45. doi: 10.3322/caac.21871. |
| [3] | Smolarz B, Biernacka K, Łukasiewicz H, et al. Ovarian Cancer-Epidemiology, Classification, Pathogenesis, Treatment, and Estrogen Receptors′ Molecular Backgrounds[J]. Int J Mol Sci, 2025, 26(10):4611. doi: 10.3390/ijms26104611. |
| [4] |
Devanaboyina M, Kaur J, Whiteley E, et al. NF-κB Signaling in Tumor Pathways Focusing on Breast and Ovarian Cancer[J]. Oncol Rev, 2022, 16:10568. doi: 10.3389/or.2022.10568.
pmid: 36531159 |
| [5] | Wang Y, Xie L, Liu F, et al. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells[J]. J Ethnopharmacol, 2024, 319(Pt 2):117299. doi: 10.1016/j.jep.2023.117299. |
| [6] | Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications[J]. Signal Transduct Target Ther, 2024, 9(1):53. doi: 10.1038/s41392-024-01757-9. |
| [7] | Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer[J]. Cells, 2023, 12(5):788. doi: 10.3390/cells12050788. |
| [8] | Liu Y, Cao Y, Kai H, et al. Polyphyllin E Inhibits Proliferation, Migration and Invasion of Ovarian Cancer Cells by Down-Regulating the AKT/NF-κB Pathway[J]. Biol Pharm Bull, 2022, 45(5):561-568. doi: 10.1248/bpb.b21-00691. |
| [9] | Nishida A, Andoh A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis[J]. Cells, 2025, 14(7):488. doi: 10.3390/cells14070488. |
| [10] | Liu S, Zhou S, Wang B, et al. Effects of curcumin nanoparticles on the proliferation and migration of human ovarian cancer cells assessed through the NF-κB/PRL-3 signaling pathway[J]. Int Immunopharmacol, 2024, 141:112964. doi: 10.1016/j.intimp.2024.112964. |
| [11] | Wu X, Sun L, Xu F. NF-κB in Cell Deaths, Therapeutic Resistance and Nanotherapy of Tumors: Recent Advances[J]. Pharmaceuticals(Basel), 2023, 16(6):783. doi: 10.3390/ph16060783. |
| [12] |
Dai W, Zhou J, Chen T. Unraveling the extracellular vesicle network: insights into ovarian cancer metastasis and chemoresistance[J]. Mol Cancer, 2024, 23(1):201. doi: 10.1186/s12943-024-02103-x.
pmid: 39285475 |
| [13] |
Yakubov B, Chelladurai B, Schmitt J, et al. Extracellular tissue transglutaminase activates noncanonical NF-κB signaling and promotes metastasis in ovarian cancer[J]. Neoplasia, 2013, 15(6):609-619. doi: 10.1593/neo.121878.
pmid: 23730209 |
| [14] | Devenport JM, Tran T, Harris BR, et al. APOBEC3A drives ovarian cancer metastasis by altering epithelial-mesenchymal transition[J]. JCI Insight, 2025, 10(5):e186409. doi: 10.1172/jci.insight.186409. |
| [15] | Diaz-Ruano AB, Martinez-Alarcon N, Perán M, et al. Estradiol and Estrone Have Different Biological Functions to Induce NF-κB-Driven Inflammation, EMT and Stemness in ER+ Cancer Cells[J]. Int J Mol Sci, 2023, 24(2):1221. doi: 10.3390/ijms24021221. |
| [16] |
Wang L, Wang X, Zhu X, et al. Drug resistance in ovarian cancer: from mechanism to clinical trial[J]. Mol Cancer, 2024, 23(1):66. doi: 10.1186/s12943-024-01967-3.
pmid: 38539161 |
| [17] | Huang SL, Chang TC, Sun NK. Curcumin reduces paclitaxel resistance in ovarian carcinoma cells by upregulating SNIP1 and inhibiting NFκB activity[J]. Biochem Pharmacol, 2023, 212:115581. doi: 10.1016/j.bcp.2023.115581. |
| [18] | Gao J, Fu Y, Song L, et al. Proapoptotic Effect of Icariin on Human Ovarian Cancer Cells via the NF-κB/PI3K-AKT Signaling Pathway: A Network Pharmacology-Directed Experimental Investigation[J]. Am J Chin Med, 2022, 50(2):589-619. doi: 10.1142/S0192415X22500239. |
| [19] | Ruibin J, Bo J, Danying W, et al. Cardamonin induces G2/M phase arrest and apoptosis through inhibition of NF-κB and mTOR pathways in ovarian cancer[J]. Aging (Albany NY), 2020, 12(24):25730-25743. doi: 10.18632/aging.104184. |
| [20] | 彭虹瑶, 宋林江, 凡艺月, 等. 黄芩苷通过调控NF-κB信号通路抑制卵巢癌细胞的增殖和迁移[J]. 中药材, 2023, 46(9):2319-2323. doi: 10.13863/j.issn1001-4454.2023.09.036. |
| [21] | Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors[J]. Front Pharmacol, 2023, 14:1282203. doi: 10.3389/fphar.2023.1282203. |
| [22] | 鞠晓红, 徐海月, 李强, 等. 胡桃醌通过调节NF-κB/Snail通路抑制卵巢癌细胞上皮间质转化[J]. 吉林医药学院学报, 2020, 41(4):241-244. |
| [23] | 韩立, 史芳瑜, 郭晓娟, 等. 芍药内酯苷调控NF-κB抑制卵巢癌转移的作用研究[J]. 中国医院药学杂志, 2022, 42(22):2361-2365. doi: 10.13286/j.1001-5213.2022.22.08. |
| [24] |
Wang Z, Zhai Z, Du X. Celastrol inhibits migration and invasion through blocking the NF-κB pathway in ovarian cancer cells[J]. Exp Ther Med, 2017, 14(1):819-824. doi: 10.3892/etm.2017.4568.
pmid: 28673005 |
| [25] |
Zhang R, Li L, Li H, et al. Ginsenoside 20(S)-Rg3 reduces KIF20A expression and promotes CDC25A proteasomal degradation in epithelial ovarian cancer[J]. J Ginseng Res, 2024, 48(1):40-51. doi: 10.1016/j.jgr.2023.06.008.
pmid: 38223825 |
| [26] | 曾博洁, 许剑利, 董珊. 虎杖多糖通过NF-κB/P65信号通路抑制卵巢癌细胞增殖[J]. 宁夏医科大学学报, 2022, 44(2):109-113. doi: 10.16050/j.cnki.issn1674-6309.2022.02.001. |
| [27] | Ren Y, He J, Zhao W, et al. The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization[J]. Front Oncol, 2022, 12:901922. doi: 10.3389/fonc.2022.901922. |
| [28] | 荆宇洁, 杨晓鹃, 郝宏霞. 苦参碱通过NF-κB信号通路抑制人乳突状卵巢腺癌细胞增殖并诱导其凋亡[J]. 中国优生与遗传杂志, 2023, 31(10):2027-2033. doi: 10.13404/j.cnki.cjbhh.2023.10.029. |
| [29] | Yang H, Li H, Lu S, et al. Fuzheng Jiedu Decoction Induces Apoptosis and Enhances Cisplatin Efficacy in Ovarian Cancer Cells In Vitro and In Vivo through Inhibiting the PI3K/AKT/mTOR/NF-κB Signaling Pathway[J]. Biomed Res Int, 2022, 2022:5739909. doi: 10.1155/2022/5739909. |
| [30] | 郭晓娟, 陈丽平, 吕芹, 等. 桂枝茯苓胶囊通过调控NF-κB通路抑制卵巢癌细胞的迁移和诱导卵巢癌细胞的凋亡[J]. 南方医科大学学报, 2023, 43(8):1315-1321. doi: 10.12122/j.issn.1673-4254.2023.08.07. |
| [31] | 于洋, 李世颖, 韩明轩, 等. 理冲生髓饮有效组分通过TRIM44介导NF-κB信号通路对人卵巢癌细胞生物学行为的影响[J]. 现代中西医结合杂志, 2025, 34(1):1-9,17. doi: 10.3969/j.issn.1008-8849.2025.01.001. |
| [1] | GAO Yue, SHI Bai-chao, YU Jian-nan, ZHANG Li-qian, WANG Yu, WU Xiao-ke. Research Progress on the Anti-Gynecological Malignancy Effects of Chinese Herbal Polysaccharides [J]. Journal of International Obstetrics and Gynecology, 2025, 52(6): 685-689. |
| [2] | SUN Ya-ge, ZHANG Yun-feng, LU Yue, GUO Jing-jing, XIANG Xiao-ying, JIA Han, WANG Yue. Research Progress on the cGAS-STING Signaling Pathway in Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(6): 696-701. |
| [3] | ZHOU Yuan, WANG Zhen-zhen, CAO Meng-dong, YU Han, SHEN Xue. Misdiagnosis of Pelvic Splenosis as Ovarian Tumor: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(6): 708-711. |
| [4] | ZHOU Ling-ling, SONG Jian-dong, Sarina . Research Progress of LncRNA HOTAIR in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 481-485. |
| [5] | QIN Chen, ZHANG Wei, LI Li. Role of Lipid Metabolism Reprogramming in the Progression and Drug Resistance of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 492-497. |
| [6] | CHENG Xiao-ran, ZHAO Dan, NIU Cheng-zhi. Machine Learning Diagnostic Model for Ovarian Malignancies Based on Laboratory Data [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 431-438. |
| [7] | XU Ruo-lan, YANG Jiang, ZHOU Jin-ting. Application of Microfluidic Technology in the Diagnosis and Treatment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 326-330. |
| [8] | FENG Xiao-yu, YAN Li-jun. The Application of Ataxia Telangiectasia Mutated and Rad3-Related Protein in the Pathogenesis, Development and Treatment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 331-336. |
| [9] | ZHANG Wei-feng, ZHANG Yi. Exploration of Surgical Techniques for Transumbilical Laparoendoscopic Single-Site Surgery for Resection of Benign Ovarian Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 337-341. |
| [10] | CHU Ying, WANG Yi-xuan, HUA Zhen-dan, ZHENG Jia-hui, WANG Zan-hong. Construction of A Nomogram Prognosis Prediction Model for the Prognosis of Ovarian Yolk Sac Tumors Based on SEER Database [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 342-349. |
| [11] | JIANG Wen-jing, DING Yong-li, LYU Qun, XIE Hui-xia, LI Ruo-peng, ZHOU Min. A Case of Giant Ovarian Leiomyoma in A Young Woman [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 350-353. |
| [12] | HUANG Yin-bo, WANG Ying, LI Cui-hong, CHE Li-fan. Ovarian Steroid Cell Tumor, Not Otherwise Specified: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 354-357. |
| [13] | CHEN Jia-yu, SHAO Ya-wen, PENG Hao-chen, WU Zhen-zhen. A Case of Advanced Ovarian Serous Carcinoma with Inguinal Lymph Node Metastasis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 357-360. |
| [14] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
| [15] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||