Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (6): 621-625.doi: 10.12280/gjfckx.20220189
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
ZHENG Jia-hui1, LIN Yan1, CHEN Qiao-fen1, WANG Xue-feng1()
Received:
2022-03-17
Published:
2022-12-15
Online:
2023-01-11
Contact:
WANG Xue-feng
E-mail:douwangxuefeng@163.com
ZHENG Jia-hui, LIN Yan, CHEN Qiao-fen, WANG Xue-feng. Research Progress of Targeting Tumor-Associated Macrophages Therapy for Ovarian Cancer[J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 621-625.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Stewart C, Ralyea C, Lockwood S. Ovarian Cancer: An Integrated Review[J]. Semin Oncol Nurs, 2019, 35(2):151-156. doi: 10.1016/j.soncn.2019.02.001.
doi: S0749-2081(19)30012-9 pmid: 30867104 |
[3] |
屈丽媛, 龚时鹏. 肿瘤相关免疫细胞在卵巢癌中的作用及研究进展[J]. 妇产与遗传(电子版), 2020, 10(4):55-59. doi: 10.3868/j.issn.2095-1558.2020.04.012.
doi: 10.3868/j.issn.2095-1558.2020.04.012 |
[4] |
Kawamura K, Komohara Y, Takaishi K, et al. Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors[J]. Pathol Int, 2009, 59(5):300-305. doi: 10.1111/j.1440-1827.2009.02369.x.
doi: 10.1111/j.1440-1827.2009.02369.x pmid: 19432671 |
[5] |
Lan C, Huang X, Lin S, et al. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer[J]. Technol Cancer Res Treat, 2013, 12(3):259-267. doi: 10.7785/tcrt.2012.500312.
doi: 10.7785/tcrt.2012.500312 |
[6] |
Moisan F, Francisco EB, Brozovic A, et al. Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers[J]. Mol Oncol, 2014, 8(7):1231-1239. doi: 10.1016/j.molonc.2014.03.016.
doi: 10.1016/j.molonc.2014.03.016 pmid: 24816187 |
[7] |
Thaklaewphan P, Ruttanapattanakul J, Monkaew S, et al. Kaempferia parviflora extract inhibits TNF-α-induced release of MCP-1 in ovarian cancer cells through the suppression of NF-κB signaling[J]. Biomed Pharmacother, 2021, 141:111911. doi: 10.1016/j.biopha.2021.111911.
doi: 10.1016/j.biopha.2021.111911 pmid: 34328090 |
[8] |
Yang Q, Guo N, Zhou Y, et al. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy[J]. Acta Pharm Sin B, 2020, 10(11):2156-2170. doi: 10.1016/j.apsb.2020.04.004.
doi: 10.1016/j.apsb.2020.04.004 pmid: 33304783 |
[9] |
Jia XH, Du Y, Mao D, et al. Zoledronic acid prevents the tumor-promoting effects of mesenchymal stem cells via MCP-1 dependent recruitment of macrophages[J]. Oncotarget, 2015, 6(28):26018-26028. doi: 10.18632/oncotarget.4658.
doi: 10.18632/oncotarget.4658 |
[10] |
Murata Y, Kotani T, Ohnishi H, et al. The CD47-SIRPα signalling system: its physiological roles and therapeutic application[J]. J Biochem, 2014, 155(6):335-344. doi: 10.1093/jb/mvu017.
doi: 10.1093/jb/mvu017 pmid: 24627525 |
[11] |
Shimizu A, Sawada K, Kobayashi M, et al. Exosomal CD47 Plays an Essential Role in Immune Evasion in Ovarian Cancer[J]. Mol Cancer Res, 2021, 19(9):1583-1595. doi: 10.1158/1541-7786.MCR-20-0956.
doi: 10.1158/1541-7786.MCR-20-0956 pmid: 34016744 |
[12] |
Huang Y, Lv SQ, Liu PY, et al. A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer[J]. Mol Oncol, 2020, 14(3):657-668. doi: 10.1002/1878-0261.12628.
doi: 10.1002/1878-0261.12628 pmid: 31899582 |
[13] |
Malfitano AM, Pisanti S, Napolitano F, et al. Tumor-Associated Macrophage Status in Cancer Treatment[J]. Cancers (Basel), 2020, 12(7):1987. doi: 10.3390/cancers12071987.
doi: 10.3390/cancers12071987 |
[14] |
Moughon DL, He H, Schokrpur S, et al. Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer[J]. Cancer Res, 2015, 75(22):4742-4752. doi: 10.1158/0008-5472.CAN-14-3373.
doi: 10.1158/0008-5472.CAN-14-3373 pmid: 26471360 |
[15] |
Rodriguez-Garcia A, Lynn RC, Poussin M, et al. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy[J]. Nat Commun, 2021, 12(1):877. doi: 10.1038/s41467-021-20893-2.
doi: 10.1038/s41467-021-20893-2 pmid: 33563975 |
[16] |
Xia H, Li S, Li X, et al. Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis[J]. JCI Insight, 2020, 5(18):e141115. doi: 10.1172/jci.insight.141115.
doi: 10.1172/jci.insight.141115 |
[17] |
Prat M, Salon M, Allain T, et al. Murlentamab, a Low Fucosylated Anti-Müllerian Hormone Type II Receptor (AMHRII) Antibody, Exhibits Anti-Tumor Activity through Tumor-Associated Macrophage Reprogrammation and T Cell Activation[J]. Cancers (Basel), 2021, 13(8): 1845. doi: 10.3390/cancers13081845.
doi: 10.3390/cancers13081845 |
[18] |
Locatelli SL, Careddu G, Serio S, et al. Targeting Cancer Cells and Tumor Microenvironment in Preclinical and Clinical Models of Hodgkin Lymphoma Using the Dual PI3Kδ/γ Inhibitor RP6530[J]. Clin Cancer Res, 2019, 25(3):1098-1112. doi: 10.1158/1078-0432.CCR-18-1133.
doi: 10.1158/1078-0432.CCR-18-1133 pmid: 30352904 |
[19] |
Feng Y, Xiao M, Zhang Z, et al. Potential interaction between lysophosphatidic acid and tumor-associated macrophages in ovarian carcinoma[J]. J Inflamm (Lond), 2020, 17:23. doi: 10.1186/s12950-020-00254-4.
doi: 10.1186/s12950-020-00254-4 |
[20] |
李乔, 尹如铁, 周乐, 等. IL-10免疫黏附素和肿瘤相关巨噬细胞对卵巢癌侵袭性的研究[J]. 华西药学杂志, 2017, 32(3):257-259. doi: 10.13375/j.cnki.wcjps.2017.03.011.
doi: 10.13375/j.cnki.wcjps.2017.03.011 |
[21] |
Zeng XY, Xie H, Yuan J, et al. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression[J]. Cancer Biol Ther, 2019, 20(7):956-966. doi: 10.1080/15384047.2018.1564567.
doi: 10.1080/15384047.2018.1564567 |
[22] |
张海杏, 孟凡良, 龚时鹏. 肿瘤相关巨噬细胞在卵巢癌耐药中的作用[J]. 妇产与遗传(电子版), 2020, 10(3):51-55. doi: 10.3868/j.issn.2095-1558.2020.03.009.
doi: 10.3868/j.issn.2095-1558.2020.03.009 |
[23] |
Heath O, Berlato C, Maniati E, et al. Chemotherapy Induces Tumor-Associated Macrophages that Aid Adaptive Immune Responses in Ovarian Cancer[J]. Cancer Immunol Res, 2021, 9(6):665-681. doi: 10.1158/2326-6066.CIR-20-0968.
doi: 10.1158/2326-6066.CIR-20-0968 pmid: 33839687 |
[24] |
Natoli M, Herzig P, Pishali Bejestani E, et al. Plinabulin, a Distinct Microtubule-Targeting Chemotherapy, Promotes M1-Like Macrophage Polarization and Anti-tumor Immunity[J]. Front Oncol, 2021, 11:644608. doi: 10.3389/fonc.2021.644608.
doi: 10.3389/fonc.2021.644608 |
[25] |
Bonaventura P, Shekarian T, Alcazer V, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy[J]. Front Immunol, 2019, 10:168. doi: 10.3389/fimmu.2019.00168.
doi: 10.3389/fimmu.2019.00168 pmid: 30800125 |
[26] |
Gaillard SL, Secord AA, Monk B. The role of immune checkpoint inhibition in the treatment of ovarian cancer[J]. Gynecol Oncol Res Pract, 2016, 3:11. doi: 10.1186/s40661-016-0033-6.
doi: 10.1186/s40661-016-0033-6 |
[27] |
Wiehagen KR, Girgis NM, Yamada DH, et al. Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity[J]. Cancer Immunol Res, 2017, 5(12):1109-1121. doi: 10.1158/2326-6066.CIR-17-0258.
doi: 10.1158/2326-6066.CIR-17-0258 pmid: 29097420 |
[28] |
Kang Y, Flores L, Ngai HW, et al. Large, Anionic Liposomes Enable Targeted Intraperitoneal Delivery of a TLR 7/8 Agonist To Repolarize Ovarian Tumors′ Microenvironment[J]. Bioconjug Chem, 2021, 32(8):1581-1592. doi: 10.1021/acs.bioconjchem.1c00139.
doi: 10.1021/acs.bioconjchem.1c00139 |
[29] |
Haber T, Cornejo YR, Aramburo S, et al. Specific targeting of ovarian tumor-associated macrophages by large, anionic nanoparticles[J]. Proc Natl Acad Sci U S A, 2020, 117(33):19737-19745. doi: 10.1073/pnas.1917424117.
doi: 10.1073/pnas.1917424117 |
[30] |
Parayath NN, Gandham SK, Leslie F, et al. Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer[J]. Cancer Lett, 2019, 461:1-9. doi: 10.1016/j.canlet.2019.07.002.
doi: S0304-3835(19)30390-8 pmid: 31288064 |
[31] | 李溪. 姜黄素调控肿瘤相关巨噬细胞极化抑制卵巢癌恶性行为及其机制研究[D]. 上海: 海军军医大学, 2019. |
[32] |
Lee K, Ahn JH, Lee KT, et al. Deoxyschizandrin, Isolated from Schisandra Berries, Induces Cell Cycle Arrest in Ovarian Cancer Cells and Inhibits the Protumoural Activation of Tumour-Associated Macrophages[J]. Nutrients, 2018, 10(1):91. doi: 10.3390/nu10010091.
doi: 10.3390/nu10010091 |
[33] | 胡辉. 基于肿瘤相关巨噬细胞的极化探讨雷公藤内酯醇对耐顺铂上皮性卵巢癌抑制机制的研究[D]. 南昌: 南昌大学(医学院), 2020. |
[1] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[2] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[3] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[4] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[5] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[6] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[7] | QIU Wan-ning, WEI Yuan. Advances in the Etiological Research of Discordant Anomalies in Monozygotic Twins Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 607-610. |
[8] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[9] | HUANG Mo-ya, ZHAO Ya-qian, HE Yin-fang. Progress in the Diagnosis and Treatment of Pregnancy Complicated by Krukenberg Tumor [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 531-535. |
[10] | ZHANG Jian-nan, GUO Xin, GUO Nan, NING Wen-ting, YU Hong-xin, SHANG Hai-xia. Application of Microfluidic Technology in Ovarian Cancer Disease Modeling, Drug Evaluation, and Precision Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 560-565. |
[11] | JIN Xiao-lei, XU Fei-xue. Five Cases of Diagnosis and Treatment of Ovarian Brenner Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 578-583. |
[12] | CHEN Zhi-wei, LIU Lin. A Case of Ovarian Malignant Tumor with SMARCA4 Gene Deletion [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 584-587. |
[13] | SU Hai-qi, LI Lei. Advances in Methylation Detection for Ovarian Cancer Screening and Diagnosis [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 366-369. |
[14] | ZHANG Jing-yi, LIU Dong-zhe, CHEN Xiu-hui. Research Advances of Exosomes in Angiogenesis of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 370-374. |
[15] | ZHANG Ting-ting, YU Ping-yuan, CHEN Xi, ZHENG Duo, YANG Yong-xiu. A Case Report of Primary Ovarian Carcinoid with Liver Metastases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 380-383. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||