Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (6): 626-629.doi: 10.12280/gjfckx.20220206
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
QU Xing1, HAN Feng-jiao1, MA Li1, WANG Xiao-hui1()
Received:
2022-03-22
Published:
2022-12-15
Online:
2023-01-11
Contact:
WANG Xiao-hui
E-mail:xiaohuiwang2015@163.com
QU Xing, HAN Feng-jiao, MA Li, WANG Xiao-hui. Prognostic Indicators of Ovarian Cancer in Immunotherapy[J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 626-629.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Stewart C, Ralyea C, Lockwood S. Ovarian Cancer: An Integrated Review[J]. Semin Oncol Nurs, 2019, 35(2):151-156. doi: 10.1016/j.soncn.2019.02.001.
doi: S0749-2081(19)30012-9 pmid: 30867104 |
[2] |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J(Engl), 2022, 135(5):584-590. doi: 10.1097/CM9.0000000000002108.
doi: 10.1097/CM9.0000000000002108 |
[3] |
Kandalaft LE, Odunsi K, Coukos G. Immunotherapy in Ovarian Cancer: Are We There Yet?[J]. J Clin Oncol, 2019, 37(27):2460-2471. doi: 10.1200/JCO.19.00508.
doi: 10.1200/JCO.19.00508 pmid: 31403857 |
[4] |
向莉, 王爱荣, 江高峰. 肿瘤免疫循环调节研究进展[J]. 肿瘤药学, 2021, 11(4):420-425. doi: 10.3969/j.issn.2095-1264.2021.04.06.
doi: 10.3969/j.issn.2095-1264.2021.04.06 |
[5] |
陈俊臣, 彭燕蓁, 成九梅. 卵巢癌免疫逃逸机制的研究进展[J]. 重庆医学, 2022, 51(10):1769-1773. doi:10.3969/j.issn.1671-8348.2022.10.032.
doi: 10.3969/j.issn.1671-8348.2022.10.032 |
[6] |
Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy[J]. J Cell Physiol, 2019, 234(10):16824-16837. doi: 10.1002/jcp.28358.
doi: 10.1002/jcp.28358 pmid: 30784085 |
[7] |
Zhang X, Yang J, Du L, et al. The prognostic value of Immunoscore in patients with cancer: A pooled analysis of 10,328 patients[J]. Int J Biol Markers, 2020, 35(3):3-13. doi: 10.1177/1724600820927409.
doi: 10.1177/1724600820927409 |
[8] |
Marliot F, Chen X, Kirilovsky A, et al. Analytical validation of the Immunoscore and its associated prognostic value in patients with colon cancer[J]. J Immunother Cancer, 2020, 8(1):e000272. doi: 10.1136/jitc-2019-000272.
doi: 10.1136/jitc-2019-000272 |
[9] |
Angell H, Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer[J]. Curr Opin Immunol, 2013, 25(2):261-267. doi: 10.1016/j.coi.2013.03.004.
doi: 10.1016/j.coi.2013.03.004 pmid: 23579076 |
[10] |
Marliot F, Lafontaine L, Galon J. Immunoscore assay for the immune classification of solid tumors: Technical aspects, improvements and clinical perspectives[J]. Methods Enzymol, 2020, 636:109-128. doi: 10.1016/bs.mie.2019.07.018.
doi: 10.1016/bs.mie.2019.07.018 |
[11] |
Mlecnik B, Tosolini M, Kirilovsky A, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction[J]. J Clin Oncol, 2011, 29(6):610-618. doi: 10.1200/JCO.2010.30.5425.
doi: 10.1200/JCO.2010.30.5425 pmid: 21245428 |
[12] |
Galon J, Fridman WH, Pagès F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective[J]. Cancer Res, 2007, 67(5):1883-1886. doi: 10.1158/0008-5472.CAN-06-4806.
doi: 10.1158/0008-5472.CAN-06-4806 pmid: 17332313 |
[13] |
Bösmüller HC, Wagner P, Peper JK, et al. Combined Immunoscore of CD103 and CD3 Identifies Long-Term Survivors in High-Grade Serous Ovarian Cancer[J]. Int J Gynecol Cancer, 2016, 26(4):671-679. doi: 10.1097/IGC.0000000000000672.
doi: 10.1097/IGC.0000000000000672 |
[14] |
Cong S, Guo Q, Cheng Y, et al. Immune Characterization of Ovarian Cancer Reveals New Cell Subtypes With Different Prognoses, Immune Risks, and Molecular Mechanisms[J]. Front Cell Dev Biol, 2020, 8:614139. doi: 10.3389/fcell.2020.614139.
doi: 10.3389/fcell.2020.614139 |
[15] |
Liu C, Seeram NP, Ma H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review[J]. Cancer Cell Int, 2021, 21(1):239. doi: 10.1186/s12935-021-01946-4.
doi: 10.1186/s12935-021-01946-4 pmid: 33906641 |
[16] |
Wieser V, Gaugg I, Fleischer M, et al. BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer[J]. Oncotarget, 2018, 9(25):17501-17511. doi: 10.18632/oncotarget.24770.
doi: 10.18632/oncotarget.24770 |
[17] |
鞠策, 高景春, 张朋新, 等. PD-1和PD-L1在卵巢上皮性癌组织中的表达及其意义[J]. 中华妇产科杂志, 2020, 55(8):529-534. doi: 10.3760/cma.j.cn112141-20200301-00155.
doi: 10.3760/cma.j.cn112141-20200301-00155 |
[18] |
Buderath P, Mairinger F, Mairinger E, et al. Prognostic significance of PD-1 and PD-L1 positive tumor-infiltrating immune cells in ovarian carcinoma[J]. Int J Gynecol Cancer, 2019, 29(9):1389-1395. doi: 10.1136/ijgc-2019-000609.
doi: 10.1136/ijgc-2019-000609 pmid: 31492714 |
[19] |
Yin X, Wu L, Yang H, et al. Prognostic significance of neutrophil-lymphocyte ratio (NLR) in patients with ovarian cancer: A systematic review and meta-analysis[J]. Medicine(Baltimore), 2019, 98(45):e17475. doi: 10.1097/MD.0000000000017475.
doi: 10.1097/MD.0000000000017475 |
[20] |
陈智丹, 张远起. 中性粒细胞与淋巴细胞比值对恶性肿瘤预后的影响[J]. 医学信息, 2021, 34(8):57-59. doi: 10.3969/j.issn.1006-1959.2021.08.015.
doi: 10.3969/j.issn.1006-1959.2021.08.015 |
[21] |
Viñal D, Gutierrez-Sainz L, Martinez D, et al. Prognostic value of neutrophil-to-lymphocyte ratio in advanced cancer patients receiving immunotherapy[J]. Clin Transl Oncol, 2021, 23(6):1185-1192. doi: 10.1007/s12094-020-02509-1.
doi: 10.1007/s12094-020-02509-1 pmid: 33226553 |
[22] |
Zhou Q, Hong L, Zuo MZ, et al. Prognostic significance of neutrophil to lymphocyte ratio in ovarian cancer: evidence from 4,910 patients[J]. Oncotarget, 2017, 8(40):68938-68949. doi: 10.18632/oncotarget.20196.
doi: 10.18632/oncotarget.20196 pmid: 28978169 |
[23] |
平文萍, 张羡, 王晓玉. 中性粒细胞与淋巴细胞比率对卵巢癌的预后价值及临床病理参数影响相关meta分析[J]. 现代医药卫生, 2021, 37(18):3111-3117. doi: 10.3969/j.issn.1009-5519.2021.18.014.
doi: 10.3969/j.issn.1009-5519.2021.18.014 |
[24] |
Ameratunga M, Chénard-Poirier M, Moreno Candilejo I, et al. Neutrophil-lymphocyte ratio kinetics in patients with advanced solid tumours on phase I trials of PD-1/PD-L1 inhibitors[J]. Eur J Cancer, 2018, 89:56-63. doi: 10.1016/j.ejca.2017.11.012.
doi: S0959-8049(17)31409-0 pmid: 29227818 |
[25] |
Li T, Liu T, Zhu W, et al. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects[J]. Clin Med Insights Oncol, 2021, 15: 11795549211035540. doi: 10.1177/11795549211035540.
doi: 10.1177/11795549211035540 |
[26] |
Yaseen MM, Abuharfeil NM, Darmani H, et al. Recent advances in myeloid-derived suppressor cell biology[J]. Front Med, 2021, 15(2):232-251. doi: 10.1007/s11684-020-0797-2.
doi: 10.1007/s11684-020-0797-2 |
[27] |
闵珂婷, 张一国, 杨浩, 等. 间充质干细胞对髓源性抑制细胞免疫应答负性调控作用的影响[J]. 中国组织工程研究, 2022, 26(19):3084-3089. doi: 10.12307/2022.390.
doi: 10.12307/2022.390 |
[28] |
Sanchez-Pino MD, Dean MJ, Ochoa AC. Myeloid-derived suppressor cells (MDSC): When good intentions go awry[J]. Cell Immunol, 2021, 362:104302. doi: 10.1016/j.cellimm.2021.104302.
doi: 10.1016/j.cellimm.2021.104302 |
[29] |
Komura N, Mabuchi S, Shimura K, et al. The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer[J]. Cancer Immunol Immunother, 2020, 69(12):2477-2499. doi: 10.1007/s00262-020-02628-2
doi: 10.1007/s00262-020-02628-2 |
[30] | Li X, Wang J, Wu W, et al. Myeloid-derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/p-STAT3 signalling pathway[J]. Febs J, 2020, 287(23):5218-5235. |
[31] |
Okła K, Czerwonka A, Wawruszak A, et al. Clinical Relevance and Immunosuppressive Pattern of Circulating and Infiltrating Subsets of Myeloid-Derived Suppressor Cells (MDSCs) in Epithelial Ovarian Cancer[J]. Front Immunol, 2019, 10:691.
doi: 10.3389/fimmu.2019.00691 pmid: 31001284 |
[32] |
Duraiswamy J, Freeman G J, Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer[J]. Cancer Res, 2013, 73(23):6900-6912.
doi: 10.1158/0008-5472.CAN-13-1550 pmid: 23975756 |
[33] | Koh J, Kim Y, Lee K Y, et al. MDSC subtypes and CD39 expression on CD8(+) T cells predict the efficacy of anti-PD-1 immunotherapy in patients with advanced NSCLC[J]. Eur J Immunol, 2020, 50(11):1810-1819. |
[1] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[2] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[3] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[4] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[5] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[6] | DOU Miao-miao, ZHENG Jing, ZHANG Hang, YANG Bo, ZHANG Chun-jie, LIU Zhi-jie. Diagnosis and Prognosis Analysis of Accessory Cavitated Uterine Malformations: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 84-88. |
[7] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[8] | LI Dan-ning, WANG Xi-peng. Research Progress on Utilizing Single-Cell Sequencing Technology to Investigate Tumor Immune Microenvironment in Epithelial Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 654-658. |
[9] | GUO Xi, LIU Si-min, WEI Jia, YANG Yong-xiu. Malignant Transformation of Ovarian and Tube Endometriosis into Clear Cell Carcinoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 680-683. |
[10] | HUANG Mo-ya, ZHAO Ya-qian, HE Yin-fang. Progress in the Diagnosis and Treatment of Pregnancy Complicated by Krukenberg Tumor [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 531-535. |
[11] | ZHANG Jian-nan, GUO Xin, GUO Nan, NING Wen-ting, YU Hong-xin, SHANG Hai-xia. Application of Microfluidic Technology in Ovarian Cancer Disease Modeling, Drug Evaluation, and Precision Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 560-565. |
[12] | BAI Yao-jun, HU Xiao-hong, LI Hong-li, LIU Chang. Research Progress on Lymphocyte Activation Gene-3 in Gynecological Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 566-571. |
[13] | HE Qing, HU Hong-bo. Application and Prospects of Artificial Intelligence in the Diagnosis and Treatment of Endometrial Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 572-577. |
[14] | JIN Xiao-lei, XU Fei-xue. Five Cases of Diagnosis and Treatment of Ovarian Brenner Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 578-583. |
[15] | CHEN Zhi-wei, LIU Lin. A Case of Ovarian Malignant Tumor with SMARCA4 Gene Deletion [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 584-587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||