Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (3): 337-342.doi: 10.12280/gjfckx.20220856
• Obstetric Physiology & Obstetric Disease: Review • Previous Articles Next Articles
ZHANG Yu-lin, FENG Xiao-ling()
Received:
2022-10-20
Published:
2023-06-15
Online:
2023-06-27
Contact:
FENG Xiao-ling, E-mail: ZHANG Yu-lin, FENG Xiao-ling. Research Progress on the Regulatory Mechanism of Autophagy on Ovarian Microenvironment[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 337-342.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Zhang C, Hu J, Wang W, et al. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS[J]. FASEB J, 2020, 34(7):9563-9574. doi: 10.1096/fj.202000605RR.
doi: 10.1096/fj.202000605RR pmid: 32469087 |
[2] |
Peters AE, Mihalas BP, Bromfield EG, et al. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging[J]. Antioxid Redox Signal, 2020, 32(8):550-568. doi: 10.1089/ars.2019.7986.
doi: 10.1089/ars.2019.7986 |
[3] |
Konstantinidou F, Stuppia L, Gatta V. Looking Inside the World of Granulosa Cells: The Noxious Effects of Cigarette Smoke[J]. Biomedicines, 2020, 8(9):309. doi: 10.3390/biomedicines8090309.
doi: 10.3390/biomedicines8090309 |
[4] |
Nakatogawa H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21(8):439-458. doi: 10.1038/s41580-020-0241-0.
doi: 10.1038/s41580-020-0241-0 |
[5] |
Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions[J]. Cell Death Differ, 2020, 27(3):858-871. doi: 10.1038/s41418-019-0480-9.
doi: 10.1038/s41418-019-0480-9 pmid: 31900427 |
[6] |
Martens S, Behrends C. Molecular Mechanisms of Selective Autophagy[J]. J Mol Biol, 2020, 432(1):1-2. doi: 10.1016/j.jmb.2019.11.010.
doi: S0022-2836(19)30674-6 pmid: 31839401 |
[7] |
Kirkin V. History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today?[J]. J Mol Biol, 2020, 432(1):3-27. doi: 10.1016/j.jmb.2019.05.010.
doi: S0022-2836(19)30265-7 pmid: 31082435 |
[8] |
Kocak M, Ezazi Erdi S, Jorba G, et al. Targeting autophagy in disease: established and new strategies[J]. Autophagy, 2022, 18(3):473-495. doi: 10.1080/15548627.2021.1936359.
doi: 10.1080/15548627.2021.1936359 |
[9] |
Prerna K, Dubey VK. Beclin1-mediated interplay between autophagy and apoptosis: New understanding[J]. Int J Biol Macromol, 2022, 204:258-273. doi: 10.1016/j.ijbiomac.2022.02.005.
doi: 10.1016/j.ijbiomac.2022.02.005 pmid: 35143849 |
[10] |
Rakesh R, PriyaDharshini LC, Sakthivel KM, et al. Role and regulation of autophagy in cancer[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(7):166400. doi: 10.1016/j.bbadis.2022.166400.
doi: 10.1016/j.bbadis.2022.166400 |
[11] |
Zhou J, Peng X, Mei S. Autophagy in Ovarian Follicular Development and Atresia[J]. Int J Biol Sci, 2019, 15(4):726-737. doi: 10.7150/ijbs.30369.
doi: 10.7150/ijbs.30369 pmid: 30906205 |
[12] |
Liu Q, Gao H, Yang F, et al. FSH Promotes Progesterone Synthesis by Enhancing Autophagy to Accelerate Lipid Droplet Degradation in Porcine Granulosa Cells[J]. Front Cell Dev Biol, 2021, 9:626927. doi: 10.3389/fcell.2021.626927.
doi: 10.3389/fcell.2021.626927 |
[13] |
Leopardo NP, Velazquez ME, Cortasa S, et al. A dual death/survival role of autophagy in the adult ovary of Lagostomus maximus (Mammalia- Rodentia)[J]. PLoS One, 2020, 15(5):e0232819. doi: 10.1371/journal.pone.0232819.
doi: 10.1371/journal.pone.0232819 |
[14] |
Grive KJ. Pathways coordinating oocyte attrition and abundance during mammalian ovarian reserve establishment[J]. Mol Reprod Dev, 2020, 87(8):843-856. doi: 10.1002/mrd.23401.
doi: 10.1002/mrd.23401 pmid: 32720428 |
[15] |
Kinnear HM, Tomaszewski CE, Chang FL, et al. The ovarian stroma as a new frontier[J]. Reproduction, 2020, 160(3):R25-R39. doi: 10.1530/REP-19-0501.
doi: 10.1530/REP-19-0501 |
[16] |
Hartanti MD, Hummitzsch K, Bonner WM, et al. Formation of the Bovine Ovarian Surface Epithelium during Fetal Development[J]. J Histochem Cytochem, 2020, 68(2):113-126. doi: 10.1369/0022155419896797.
doi: 10.1369/0022155419896797 pmid: 31855103 |
[17] |
Rowley JE, Amargant F, Zhou LT, et al. Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro[J]. Int J Mol Sci, 2020, 21(3):1036. doi: 10.3390/ijms21031036.
doi: 10.3390/ijms21031036 |
[18] |
Xu Z. Autophagy phenomenon in mice ovaries following transplantation[J]. Theriogenology, 2023, 195:40-45. doi: 10.1016/j.theriogenology.2022.10.018.
doi: 10.1016/j.theriogenology.2022.10.018 |
[19] |
Tang Z, Zhang Z, Lin Q, et al. HIF-1α/BNIP3-Mediated Autophagy Contributes to the Luteinization of Granulosa Cells During the Formation of Corpus Luteum[J]. Front Cell Dev Biol, 2020, 8:619924. doi: 10.3389/fcell.2020.619924.
doi: 10.3389/fcell.2020.619924 |
[20] |
Ullah S, Zhang M, Yu H, et al. Heat exposure affected the reproductive performance of pregnant mice: Enhancement of autophagy and alteration of subcellular structure in the corpus luteum[J]. Reprod Biol, 2019, 19(3):261-269. doi: 10.1016/j.repbio.2019.06.006.
doi: S1642-431X(19)30047-6 pmid: 31285134 |
[21] |
Pate JL. Roadmap to pregnancy during the period of maternal recognition in the cow: Changes within the corpus luteum associated with luteal rescue[J]. Theriogenology, 2020, 150:294-301. doi: 10.1016/j.theriogenology.2020.01.074.
doi: S0093-691X(20)30087-X pmid: 32115247 |
[22] |
Teeli AS, Leszczyński P, Krishnaswamy N, et al. Possible Mechanisms for Maintenance and Regression of Corpus Luteum Through the Ubiquitin-Proteasome and Autophagy System Regulated by Transcriptional Factors[J]. Front Endocrinol(Lausanne), 2019, 10:748. doi: 10.3389/fendo.2019.00748.
doi: 10.3389/fendo.2019.00748 |
[23] |
Li L, Zhu J, Ye F, et al. Upregulation of the lncRNA SRLR in polycystic ovary syndrome regulates cell apoptosis and IL-6 expression[J]. Cell Biochem Funct, 2020, 38(7):880-885. doi: 10.1002/cbf.3507.
doi: 10.1002/cbf.3507 pmid: 31999854 |
[24] |
Kumariya S, Ubba V, Jha RK, et al. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective[J]. Autophagy, 2021, 17(10):2706-2733. doi: 10.1080/15548627.2021.1938914.
doi: 10.1080/15548627.2021.1938914 |
[25] |
Masjedi F, Keshtgar S, Zal F, et al. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries[J]. J Steroid Biochem Mol Biol, 2020, 197:105521. doi: 10.1016/j.jsbmb.2019.105521.
doi: 10.1016/j.jsbmb.2019.105521 |
[26] |
Chen X, Tang H, Liang Y, et al. Acupuncture regulates the autophagy of ovarian granulosa cells in polycystic ovarian syndrome ovulation disorder by inhibiting the PI3K/AKT/mTOR pathway through LncMEG3[J]. Biomed Pharmacother, 2021, 144:112288. doi: 10.1016/j.biopha.2021.112288.
doi: 10.1016/j.biopha.2021.112288 pmid: 34653763 |
[27] |
Li X, Qi J, Zhu Q, et al. The role of androgen in autophagy of granulosa cells from PCOS[J]. Gynecol Endocrinol, 2019, 35(8):669-672. doi: 10.1080/09513590.2018.1540567.
doi: 10.1080/09513590.2018.1540567 pmid: 31056990 |
[28] |
Emidio GD, Placidi M, Rea F, et al. Methylglyoxal-Dependent Glycative Stress and Deregulation of SIRT1 Functional Network in the Ovary of PCOS Mice[J]. Cells, 2020, 9(1):209. doi: 10.3390/cells9010209.
doi: 10.3390/cells9010209 |
[29] |
Xu B, Dai W, Liu L, et al. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway[J]. Endocr J, 2022, 69(7):863-875. doi: 10.1507/endocrj.EJ21-0480.
doi: 10.1507/endocrj.EJ21-0480 pmid: 35228471 |
[30] |
Mason IC, Qian J, Adler GK, et al. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes[J]. Diabetologia, 2020, 63(3):462-472. doi: 10.1007/s00125-019-05059-6.
doi: 10.1007/s00125-019-05059-6 pmid: 31915891 |
[31] |
Wang X, Xu Z, Cai Y, et al. Rheostatic Balance of Circadian Rhythm and Autophagy in Metabolism and Disease[J]. Front Cell Dev Biol, 2020, 8:616434. doi: 10.3389/fcell.2020.616434.
doi: 10.3389/fcell.2020.616434 |
[32] |
王士萌, 赵小萱, 张杨, 等. 《早发性卵巢功能不全中西医结合诊疗指南》解读[J]. 中国临床医生杂志, 2022, 50(8):899-903. doi: 10.3969/j.issn.2095-8552.2022.08.007.
doi: 10.3969/j.issn.2095-8552.2022.08.007 |
[33] |
Delcour C, Amazit L, Patino LC, et al. ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure[J]. Genet Med, 2019, 21(4):930-938. doi: 10.1038/s41436-018-0287-y.
doi: 10.1038/s41436-018-0287-y pmid: 30224786 |
[34] |
Liu L, Wang H, Xu GL, et al. Tet1 Deficiency Leads to Premature Ovarian Failure[J]. Front Cell Dev Biol, 2021, 9:644135. doi: 10.3389/fcell.2021.644135.
doi: 10.3389/fcell.2021.644135 |
[35] |
Shen Q, Liu Y, Li H, et al. Effect of mitophagy in oocytes and granulosa cells on oocyte quality?[J]. Biol Reprod, 2021, 104(2):294-304. doi: 10.1093/biolre/ioaa194.
doi: 10.1093/biolre/ioaa194 |
[36] |
Sonigo C, Beau I, Grynberg M, et al. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice[J]. FASEB J, 2019, 33(1):1278-1287. doi: 10.1096/fj.201801089R.
doi: 10.1096/fj.201801089R pmid: 30113879 |
[37] |
中国抗癌协会妇科肿瘤专业委员会. 卵巢恶性肿瘤诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6):490-500. doi: 10.19401/j.cnki.1007-3639.2021.06.07.
doi: 10.19401/j.cnki.1007-3639.2021.06.07 |
[38] |
Jiang Y, Wang C, Zhou S. Targeting tumor microenvironment in ovarian cancer: Premise and promise[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(2): 188361. doi: 10.1016/j.bbcan.2020.188361.
doi: 10.1016/j.bbcan.2020.188361 |
[39] |
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer[J]. Cancers(Basel), 2019, 11(11):1775. doi: 10.3390/cancers11111775.
doi: 10.3390/cancers11111775 |
[40] |
Pu Z, Wu L, Guo Y, et al. LncRNA MEG3 contributes to adenosine-induced cytotoxicity in hepatoma HepG2 cells by downregulated ILF3 and autophagy inhibition via regulation PI3K-AKT-mTOR and beclin-1 signaling pathway[J]. J Cell Biochem, 2019, 120(10):18172-18185. doi: 10.1002/jcb.29123.
doi: 10.1002/jcb.29123 pmid: 31144362 |
[41] |
Follo C, Vidoni C, Morani F, et al. Amino acid response by Halofuginone in Cancer cells triggers autophagy through proteasome degradation of mTOR[J]. Cell Commun Signal, 2019, 17(1):39. doi: 10.1186/s12964-019-0354-2.
doi: 10.1186/s12964-019-0354-2 pmid: 31046771 |
[42] |
Zhu H, Diao S, Lim V, et al. FAM83D inhibits autophagy and promotes proliferation and invasion of ovarian cancer cells via PI3K/AKT/mTOR pathway[J]. Acta Biochim Biophys Sin(Shanghai), 2019, 51(5):509-516. doi: 10.1093/abbs/gmz028.
doi: 10.1093/abbs/gmz028 |
[43] |
Chen YN, Ren CC, Yang L, et al. MicroRNA let-7d-5p rescues ovarian cancer cell apoptosis and restores chemosensitivity by regulating the p53 signaling pathway via HMGA1[J]. Int J Oncol, 2019, 54(5):1771-1784. doi: 10.3892/ijo.2019.4731.
doi: 10.3892/ijo.2019.4731 pmid: 30816441 |
[44] |
Hu Z, Cai M, Zhang Y, et al. miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway[J]. Cell Cycle, 2020, 19(2):193-206. doi: 10.1080/15384101.2019.1704537.
doi: 10.1080/15384101.2019.1704537 pmid: 31885310 |
[1] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[2] | YAN Hui-bo, ZHANG Lin. Analysis of the Disease Burden and Projections of Polycystic Ovary Syndrome in China and Globally from 1990 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 228-233. |
[3] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[4] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[5] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[6] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[7] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[8] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[9] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[10] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[11] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
[12] | LI Chen-xi, FAN Meng-xiao, WU Lin-ling, DOU Zhen, JIA Jia, SUN Ya-xuan. Advances in Research on Neuroendocrine Disorders Induced by Hyperandrogenism in Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 698-702. |
[13] | GAO Yi-wei, LUO Wei, WU Qiong, MU Yu-lan. The Relationship Between Ferroptosis and Premature Ovarian Insufficiency [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 497-502. |
[14] | HUANG Mo-ya, ZHAO Ya-qian, HE Yin-fang. Progress in the Diagnosis and Treatment of Pregnancy Complicated by Krukenberg Tumor [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 531-535. |
[15] | ZHANG Jian-nan, GUO Xin, GUO Nan, NING Wen-ting, YU Hong-xin, SHANG Hai-xia. Application of Microfluidic Technology in Ovarian Cancer Disease Modeling, Drug Evaluation, and Precision Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 560-565. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||