Journal of International Obstetrics and Gynecology ›› 2021, Vol. 48 ›› Issue (2): 121-125.doi: 10.12280/gjfckx.20200596
• Research on Gynecological Malignancies Review • Next Articles
ZHANG Hong-lei, ZHAO Wei-hong△()
Received:
2020-07-08
Published:
2021-04-15
Online:
2021-04-16
Contact:
ZHAO Wei-hong
E-mail:sydeyzwh@sxmu.edu.cn
ZHANG Hong-lei, ZHAO Wei-hong. Research Progress of E3 Ubiquitin Ligase CUL2 in Cervical Cancer[J]. Journal of International Obstetrics and Gynecology, 2021, 48(2): 121-125.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Deshaies RJ, Pierce NW. Transfer of ubiquitin protein caught in the act[J]. Nature, 2020,578(7795):372-373. doi: 10.1038/d41586-020-00325-9.
doi: 10.1038/d41586-020-00325-9 pmid: 32066917 |
[2] |
Scott DC, Kleiger G. Regulation of Cullin-RING E3 ligase dynamics by Inositol hexakisphosphate[J]. Proc Natl Acad Sci U S A, 2020,117(12):6292-6294. doi: 10.1073/pnas.2001683117.
pmid: 32156730 |
[3] |
Liu Y, Tan X. Viral Manipulations of the Cullin-RING Ubiquitin Ligases[J]. Adv Exp Med Biol, 2020,1217:99-110. doi: 10.1007/978-981-15-1025-0_7.
doi: 10.1007/978-981-15-1025-0_7 pmid: 31898224 |
[4] |
Shafique S, Ali W, Kanwal S, et al. Structural basis for Cullins and RING component inhibition: Targeting E3 ubiquitin pathway conductors for cancer therapeutics[J]. Int J Biol Macromol, 2018,106:532-543. doi: 10.1016/j.ijbiomac.2017.08.047.
doi: 10.1016/j.ijbiomac.2017.08.047 pmid: 28802844 |
[5] |
Nguyen HC, Yang H, Fribourgh JL, et al. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex[J]. Structure, 2015,23(3):441-449. doi: 10.1016/j.str.2014.12.014.
pmid: 25661653 |
[6] |
Scott DC, Rhee DY, Duda DM, et al. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation[J]. Cell, 2016, 166(5): 1198-1214.e24. doi: 10.1016/j.cell.2016.07.027.
doi: 10.1016/j.cell.2016.07.027 pmid: 27565346 |
[7] |
Mirabello L, Yeager M, Yu K, et al. HPV16 E7 Genetic Conservation Is Critical to Carcinogenesis[J]. Cell, 2017, 170(6): 1164-1174.e6. doi: 10.1016/j.cell.2017.08.001.
doi: 10.1016/j.cell.2017.08.001 pmid: 28886384 |
[8] | Carrillo-Beltrán D, Muñoz JP, Guerrero-Vásquez N, et al. Human Papillomavirus 16 E7 Promotes EGFR/PI3K/AKT1/NRF2 Signaling Pathway Contributing to PIR/NF-κB Activation in Oral Cancer Cells[J]. Cancers(Basel), 2020,12(7):1904. doi: 10.3390/cancers12071904. |
[9] | Balasubramaniam SD, Balakrishnan V, Oon CE, et al. Key Molecular Events in Cervical Cancer Development[J]. Medicina (Kaunas), 2019,55(7):384. doi: 10.3390/medicina55070384. |
[10] |
Chan AB, Huber AL, Lamia KA. Cryptochromes modulate E2F family transcription factors[J]. Sci Rep, 2020,10(1):4077. doi: 10.1038/s41598-020-61087-y.
pmid: 32139766 |
[11] |
Huh K, Zhou X, Hayakawa H, et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor[J]. J Virol, 2007,81(18):9737-9747. doi: 10.1128/JVI.00881-07.
doi: 10.1128/JVI.00881-07 pmid: 17609271 |
[12] |
Xu J, Fang Y, Wang X, et al. CUL2 overexpression driven by CUL2/E2F1/miR-424 regulatory loop promotes HPV16 E7 induced cervical carcinogenesis[J]. Oncotarget, 2016,7(21):31520-31533. doi: 10.18632/oncotarget.9127.
doi: 10.18632/oncotarget.9127 pmid: 27153550 |
[13] |
Zhao W, Liu Y, Zhang L, et al. MicroRNA-154-5p regulates the HPV16 E7-pRb pathway in Cervical Carcinogenesis by targeting CUL2[J]. J Cancer, 2020,11(18):5379-5389. doi: 10.7150/jca.45871.
doi: 10.7150/jca.45871 pmid: 32742484 |
[14] |
Westrich JA, Warren CJ, Klausner MJ, et al. Human Papillomavirus 16 E7 Stabilizes APOBEC3A Protein by Inhibiting Cullin 2-Dependent Protein Degradation[J]. J Virol, 2018,92(7):e01318-17. doi: 10.1128/JVI.01318-17.
doi: 10.1128/JVI.01318-17 pmid: 29367246 |
[15] |
Smith NJ, Fenton TR. The APOBEC3 genes and their role in cancer: insights from human papillomavirus[J]. J Mol Endocrinol, 2019,62(4):R269-269R287. doi: 10.1530/JME-19-0011.
doi: 10.1530/JME-19-0011 pmid: 30870810 |
[16] |
Diamond CP, Im J, Button EA, et al. AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation[J]. Biochim Biophys Acta Gen Subj, 2019,1863(11):129415. doi: 10.1016/j.bbagen.2019.129415.
doi: 10.1016/j.bbagen.2019.129415 pmid: 31404619 |
[17] |
Barontini M, Dahia PL. VHL disease[J]. Best Pract Res Clin Endocrinol Metab, 2010,24(3):401-413. doi: 10.1016/j.beem.2010.01.002.
doi: 10.1016/j.beem.2010.01.002 pmid: 20833332 |
[18] |
Hsieh JJ, Le VH, Oyama T, et al. Chromosome 3p Loss-Orchestrated VHL, HIF, Epigenetic Deregulation in Clear Cell Renal Cell Carcinoma[J]. J Clin Oncol, 2018,36(36):JCO2018792549. doi: 10.1200/JCO.2018.79.2549.
doi: 10.1200/JCO.2018.79.2341 pmid: 30372390 |
[19] |
Cai L, Wang W, Li X, et al. MicroRNA-21-5p induces the metastatic phenotype of human cervical carcinoma cells in vitro by targeting the von Hippel-Lindau tumor suppressor[J]. Oncol Lett, 2018,15(4):5213-5219. doi: 10.3892/ol.2018.7937.
doi: 10.3892/ol.2018.7937 pmid: 29552160 |
[20] |
Guo Y, Meng X, Ma J, et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction[J]. Int J Mol Sci, 2014,15(5):7974-7986. doi: 10.3390/ijms15057974.
doi: 10.3390/ijms15057974 pmid: 24810689 |
[21] |
Liu X, Zurlo G, Zhang Q. The Roles of Cullin-2 E3 Ubiquitin Ligase Complex in Cancer[J]. Adv Exp Med Biol, 2020,1217:173-186. doi: 10.1007/978-981-15-1025-0_11.
doi: 10.1007/978-981-15-1025-0_11 pmid: 31898228 |
[22] |
Dasgupta SK, Thiagarajan P. Cofilin-1-induced actin reorganization in stored platelets[J]. Transfusion, 2020,60(4):806-814. doi: 10.1111/trf.15747.
doi: 10.1111/trf.15747 pmid: 32159862 |
[23] | 左玉, 李庆伟, 李莹莹. 丝切蛋白-1作为肿瘤治疗生物标记分子的作用机制[J]. 中国生物化学与分子生物学报, 2018,34(9):921-926. doi: 10.13865/j.cnki.cjbmb.2018.09.02. |
[24] |
Costessi A, Mahrour N, Sharma V, et al. The human EKC/KEOPS complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME[J]. PLoS One, 2012,7(8):e42822. doi: 10.1371/journal.pone.0042822.
doi: 10.1371/journal.pone.0042822 pmid: 22912744 |
[25] |
Costessi A, Mahrour N, Tijchon E, et al. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters[J]. EMBO J, 2011,30(18):3786-3798. doi: 10.1038/emboj.2011.262.
pmid: 21822215 |
[26] |
Jiang Y, Cheng W, Li L, et al. Effective targeting of the ubiquitin-like modifier NEDD8 for lung adenocarcinoma treatment[J]. Cell Biol Toxicol, 2020,36(4):349-364. doi: 10.1007/s10565-019-09503-6.
doi: 10.1007/s10565-019-09503-6 pmid: 31907687 |
[27] |
Schwechheimer C. NEDD8-its role in the regulation of Cullin-RING ligases[J]. Curr Opin Plant Biol, 2018,45(Pt A):112-119. doi: 10.1016/j.pbi.2018.05.017.
doi: 10.1016/j.pbi.2018.05.017 pmid: 29909289 |
[28] |
Aubry A, Yu T, Bremner R. Preclinical studies reveal MLN4924 is a promising new retinoblastoma therapy[J]. Cell Death Discov, 2020,6:2. doi: 10.1038/s41420-020-0237-8.
doi: 10.1038/s41420-020-0237-8 pmid: 32123578 |
[29] |
Zhou L, Jia L. Targeting Protein Neddylation for Cancer Therapy[J]. Adv Exp Med Biol, 2020,1217:297-315. doi: 10.1007/978-981-15-1025-0_18.
doi: 10.1007/978-981-15-1025-0_18 pmid: 31898235 |
[30] |
Xu J, Li L, Yu G, et al. The neddylation-cullin 2-RBX1 E3 ligase axis targets tumor suppressor RhoB for degradation in liver cancer[J]. Mol Cell Proteomics, 2015,14(3):499-509. doi: 10.1074/mcp.M114.045211.
doi: 10.1074/mcp.M114.045211 pmid: 25540389 |
[31] |
Meng J, Chen S, Han JX, et al. Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma[J]. Cancer Res, 2018,78(15):4150-4162. doi: 10.1158/0008-5472.CAN-17-3009.
doi: 10.1158/0008-5472.CAN-17-3009 pmid: 29844124 |
[32] |
Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer[J]. Mol Cancer, 2020,19(1):30. doi: 10.1186/s12943-020-1135-7.
pmid: 32059672 |
[33] | 汪雯雯, 栗妍, 陶涛, 等. TWIST介导的上皮-间质转化与宫颈癌发生发展相关性的研究[J]. 中华肿瘤防治杂志, 2011,18(22):1741-1745. |
[34] |
Babion I, Jaspers A, van Splunter AP, et al. miR-9-5p Exerts a Dual Role in Cervical Cancer and Targets Transcription Factor TWIST1[J]. Cells, 2019,9(1):65. doi: 10.3390/cells9010065.
doi: 10.3390/cells9010065 |
[35] |
Choi CH, Lee KM, Choi JJ, et al. Hypermethylation and loss of heterozygosity of tumor suppressor genes on chromosome 3p in cervical cancer[J]. Cancer Lett, 2007,255(1):26-33. doi: 10.1016/j.canlet.2007.03.015.
pmid: 17467893 |
[36] |
Hwang J, Min BH, Jang J, et al. MicroRNA Expression Profiles in Gastric Carcinogenesis[J]. Sci Rep, 2018,8(1):14393. doi: 10.1038/s41598-018-32782-8.
doi: 10.1038/s41598-018-32782-8 pmid: 30258124 |
[37] |
Wang M, Zhang R, Zhang S, et al. MicroRNA-574-3p regulates epithelial mesenchymal transition and cisplatin resistance via targeting ZEB1 in human gastric carcinoma cells[J]. Gene, 2019,700:110-119. doi: 10.1016/j.gene.2019.03.043.
doi: 10.1016/j.gene.2019.03.043 pmid: 30917930 |
[1] | GUO Jing, ZHANG Mao-xiang, ZHOU Chun-he, LIU Si-ning, LI Hui-yan. The Progress of Mendelian Randomization in the Study of the Causal Relationship between Exposure Factors and Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 169-174. |
[2] | CHAI Ling-na, LI Yan-li, SHI Jie, GAO Han, OUYANG Xi-yan, CHENG Shi-yu. Clinical Application of Indocyanine Green Tracing of Sentinel Lymph Nodes in Early Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 175-179. |
[3] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[4] | HU Ming-zhu, LIU Li-wen, HUANG Lei. The Relationship between Vaginal Microecology and Cervical Cancer in HIV-Infected Women [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 13-18. |
[5] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[6] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[7] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
[8] | LI Dan-ning, WANG Xi-peng. Research Progress on Utilizing Single-Cell Sequencing Technology to Investigate Tumor Immune Microenvironment in Epithelial Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 654-658. |
[9] | WEI Jin-hua, QI Yu-chao, SHEN Xiao-ya. Analysis on the Incidence and Mortality of Cervical Cancer in China Based on the Age-Period-Cohort Model from 1992 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 664-668. |
[10] | LIU Yu, WU Rui-fang, LI Rui-zhen. A Case Report of Pregnancy after Radical Cervicectomy with Neoadjuvant Chemotherapy in Stage ⅠB2 Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 669-671. |
[11] | SONG Han, LIU Han-li, WANG Xi-bo. A Case of Soft Tissue Metastasis in the Back from Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 672-675. |
[12] | ZHOU Ting, LIANG Bao-quan. Ovarian Endometrioid Carcinoma Associated with Trousseau Syndrome: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 676-679. |
[13] | GUO Xi, LIU Si-min, WEI Jia, YANG Yong-xiu. Malignant Transformation of Ovarian and Tube Endometriosis into Clear Cell Carcinoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 680-683. |
[14] | ZHU Dan-mo, LIU Qin. A Case of Choriocarcinoma Discovered after Preterm Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 546-548. |
[15] | WANG Jing, WANG Xiao-hui. Cervical Carcinosarcoma:A Case Report and Literature Review [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 597-600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||