Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (3): 322-326.doi: 10.12280/gjfckx.20221051
• Obstetric Physiology & Obstetric Disease: Review • Previous Articles Next Articles
XIA Li-na, SHAN Li(), ZHAO Huan, CHU Guang-hua, WANG Yan-xia
Received:
2022-12-11
Published:
2023-06-15
Online:
2023-06-27
Contact:
SHAN Li, E-mail: XIA Li-na, SHAN Li, ZHAO Huan, CHU Guang-hua, WANG Yan-xia. Application of Metabonomics in the Study of Missed Abortion[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 322-326.
Add to citation manager EndNote|Ris|BibTeX
[1] | 刘玉峰, 范笑荧, 杨宏天, 等. 代谢组学在疾病诊断方面的研究进展[J]. 辽宁大学学报(自然科学版), 2020, 47(2):149-155. |
[2] |
Liu X, Wang X, Sun H, et al. Urinary metabolic variation analysis during pregnancy and application in Gestational Diabetes Mellitus and spontaneous abortion biomarker discovery[J]. Sci Rep, 2019, 9(1):2605. doi: 10.1038/s41598-019-39259-2.
doi: 10.1038/s41598-019-39259-2 pmid: 30796299 |
[3] |
Youssef L, Crovetto F, Simoes RV, et al. The Interplay between Pathophysiological Pathways in Early-Onset Severe Preeclampsia Unveiled by Metabolomics[J]. Life(Basel), 2022, 12(1):86. doi: 10.3390/life12010086.
doi: 10.3390/life12010086 |
[4] |
Huang Y, Tu M, Qian Y, et al. Age-Dependent Metabolomic Profile of the Follicular Fluids From Women Undergoing Assisted Reproductive Technology Treatment[J]. Front Endocrinol(Lausanne), 2022, 13:818888. doi: 10.3389/fendo.2022.818888.
doi: 10.3389/fendo.2022.818888 |
[5] |
于阳洋, 孙振高. 卵泡液代谢组学与相关疾病的研究进展[J]. 医学综述, 2019, 25(19):3778-3781,3787. doi: 10.3969/j.issn.1006-2084.2019.19.007.
doi: 10.3969/j.issn.1006-2084.2019.19.007 |
[6] |
Diaz SO, Barros AS, Goodfellow BJ, et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes[J]. J Proteome Res, 2013, 12(6):2946-2957. doi: 10.1021/pr4002355.
doi: 10.1021/pr4002355 pmid: 23611123 |
[7] |
Turkoglu O, Citil A, Katar C, et al. Metabolomic identification of novel diagnostic biomarkers in ectopic pregnancy[J]. Metabolomics, 2019, 15(11):143. doi: 10.1007/s11306-019-1607-1.
doi: 10.1007/s11306-019-1607-1 pmid: 31630278 |
[8] |
吕若婵, 张林爱. 稽留流产病因学的相关研究进展[J]. 中国计划生育和妇产科, 2022, 14(10):10-13. doi: 10.3969/j.issn.1674-4020.2022.10.03.
doi: 10.3969/j.issn.1674-4020.2022.10.03 |
[9] |
Deng L, Chen HF, Su JY, et al. Analysis results of 169 cases of chorionic villus samples of missed abortion using high throughput sequencing[J]. Eur Rev Med Pharmacol Sci, 2022, 26(15):5496-5502. doi: 10.26355/eurrev_202208_29419.
doi: 10.26355/eurrev_202208_29419 |
[10] |
Luo M, Xiao H, Wang L, et al. The expression and clinical significance of three lncRNAs in patients with a missed abortion[J]. Exp Ther Med, 2021, 21(1):8. doi: 10.3892/etm.2020.9440.
doi: 10.3892/etm.2020.9440 pmid: 33235617 |
[11] |
Wu Z, Jin L, Zheng W, et al. NMR-based serum metabolomics study reveals a innovative diagnostic model for missed abortion[J]. Biochem Biophys Res Commun, 2018, 496(2):679-685. doi: 10.1016/j.bbrc.2018.01.096.
doi: 10.1016/j.bbrc.2018.01.096 |
[12] |
Zaid A, Khan MS, Yan D, et al. Comprehensive two-dimensional gas chromatography with mass spectrometry: an advanced bioanalytical technique for clinical metabolomics studies[J]. Analyst, 2022, 147(18):3974-3992. doi: 10.1039/d2an00584k.
doi: 10.1039/d2an00584k pmid: 35959641 |
[13] |
Liu X, Locasale JW. Metabolomics: A Primer[J]. Trends Biochem Sci, 2017, 42(4):274-284. doi: 10.1016/j.tibs.2017.01.004.
doi: S0968-0004(17)30018-X pmid: 28196646 |
[14] |
Moco S, Buescher JM. Metabolomics: Going Deeper, Going Broader, Going Further[J]. Methods Mol Biol, 2023, 2554:155-178. doi: 10.1007/978-1-0716-2624-5_11.
doi: 10.1007/978-1-0716-2624-5_11 pmid: 36178626 |
[15] |
杭栋, 沈洪兵. 代谢组流行病学研究进展[J]. 中华流行病学杂志, 2021, 42(7):1148-1153. doi: 10.3760/cma.j.cn112338-20210413-00310.
doi: 10.3760/cma.j.cn112338-20210413-00310 |
[16] |
Roca M, Alcoriza MI, Garcia-Cañaveras JC, et al. Reviewing the metabolome coverage provided by LC-MS: Focus on sample preparation and chromatography-A tutorial[J]. Anal Chim Acta, 2021, 1147:38-55. doi: 10.1016/j.aca.2020.12.025.
doi: 10.1016/j.aca.2020.12.025 pmid: 33485584 |
[17] |
Edison AS, Colonna M, Gouveia GJ, et al. NMR: Unique Strengths That Enhance Modern Metabolomics Research[J]. Anal Chem, 2021, 93(1):478-499. doi: 10.1021/acs.analchem.0c04414.
doi: 10.1021/acs.analchem.0c04414 pmid: 33180470 |
[18] |
Letertre M, Dervilly G, Giraudeau P. Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics[J]. Anal Chem, 2021, 93(1):500-518. doi: 10.1021/acs.analchem.0c04371.
doi: 10.1021/acs.analchem.0c04371 pmid: 33155816 |
[19] |
Nagana Gowda GA, Raftery D. NMR-Based Metabolomics[J]. Adv Exp Med Biol, 2021, 1280:19-37. doi: 10.1007/978-3-030-51652-9_2.
doi: 10.1007/978-3-030-51652-9_2 pmid: 33791972 |
[20] |
Crook AA, Powers R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications[J]. Molecules, 2020, 25(21):5128. doi: 10.3390/molecules25215128.
doi: 10.3390/molecules25215128 |
[21] |
Zeki ÖC, Eylem CC, Reçber T, et al. Integration of GC-MS and LC-MS for untargeted metabolomics profiling[J]. J Pharm Biomed Anal, 2020, 190:113509. doi: 10.1016/j.jpba.2020.113509.
doi: 10.1016/j.jpba.2020.113509 |
[22] |
付金, 胡建安. 代谢组学在环境污染物的毒作用及其机制研究中的进展[J]. 中南大学学报(医学版), 2019, 44(6):692-700. doi: 10.11817/j.issn.1672-7347.2019.06.013.
doi: 10.11817/j.issn.1672-7347.2019.06.013 |
[23] |
Grögera TM, Käferab U, Zimmermannab R. Gas chromatography in combination with fast high-resolution time-of-flight mass spectrometry: Technical overview and perspectives for data visualization[J]. Trends Anal Chem, 2020, 122:115677. doi:10.1016/j.trac.2019.115677.
doi: 10.1016/j.trac.2019.115677 |
[24] |
Yang Z, Ren ZY, Cheng YJ, et al. Review and prospect on portable mass spectrometer for recent applications[J]. Vacuum, 2022, 199:110889. doi:10.1016/J.VACUUM.2022.110889.
doi: 10.1016/J.VACUUM.2022.110889 |
[25] |
徐晓雅, 陈鑫, 邓惠婷, 等. 液质联用技术的应用与发展[J]. 广州化工, 2020, 48(6):47-49. doi: 10.3969/j.issn.1001-9677.2020.06.019.
doi: 10.3969/j.issn.1001-9677.2020.06.019 |
[26] |
Miao SB, Feng YR, Wang XD, et al. Glutamine as a Potential Noninvasive Biomarker for Human Embryo Selection[J]. Reprod Sci, 2022, 29(6):1721-1729. doi: 10.1007/s43032-021-00812-y.
doi: 10.1007/s43032-021-00812-y |
[27] |
Fu S, Li Z, Xiao L, et al. Glutamine Synthetase Promotes Radiation Resistance via Facilitating Nucleotide Metabolism and Subsequent DNA Damage Repair[J]. Cell Rep, 2019, 28(5):1136-1143.e4. doi: 10.1016/j.celrep.2019.07.002.
doi: S2211-1247(19)30886-1 pmid: 31365859 |
[28] |
Špirková A, Kovaříková V, Šefčíková Z, et al. Glutamate can act as a signaling molecule in mouse preimplantation embryos?[J]. Biol Reprod, 2022, 107(4):916-927. doi: 10.1093/biolre/ioac126.
doi: 10.1093/biolre/ioac126 |
[29] |
Arnold PK, Jackson BT, Paras KI, et al. A non-canonical tricarboxylic acid cycle underlies cellular identity[J]. Nature, 2022, 603(7901):477-481. doi: 10.1038/s41586-022-04475-w.
doi: 10.1038/s41586-022-04475-w |
[30] |
Bhattacharjee A, Prajapati SK, Krishnamurthy S. Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms[J]. Eur J Pharmacol, 2021, 908:174361. doi: 10.1016/j.ejphar.2021.174361.
doi: 10.1016/j.ejphar.2021.174361 |
[31] |
Fei H, Hou J, Wu Z, et al. Plasma metabolomic profile and potential biomarkers for missed abortion[J]. Biomed Chromatogr, 2016, 30(12):1942-1952. doi: 10.1002/bmc.3770.
doi: 10.1002/bmc.3770 pmid: 27229294 |
[32] |
吕雪明, 王琳, 丁秋莲, 等. 吲哚胺2,3-双加氧酶的研究及应用[J]. 山西化工, 2022, 42(3):153-154. doi: 10.16525/j.cnki.cn14-1109/tq.2022.03.063.
doi: 10.16525/j.cnki.cn14-1109/tq.2022.03.063 |
[33] |
van Zundert S, Griffioen PH, van Rossem L, et al. Simultaneous quantification of tryptophan metabolites by liquid chromatography tandem mass spectrometry during early human pregnancy[J]. Clin Chem Lab Med, 2022, 61(3):442-451. doi: 10.1515/cclm-2022-0790.
doi: 10.1515/cclm-2022-0790 pmid: 36458576 |
[34] |
da Silva Junior CA, Marques DA, Patrone L, et al. Intra-uterine diazepam exposure decreases the number of catecholaminergic and serotoninergic neurons of neonate rats[J]. Neurosci Lett, 2022, 795:137014. doi: 10.1016/j.neulet.2022.137014.
doi: 10.1016/j.neulet.2022.137014 |
[35] |
Wei H, Liu S, Lian R, et al. Abnormal Expression of Indoleamine 2, 3-Dioxygenase in Human Recurrent Miscarriage[J]. Reprod Sci, 2020, 27(8):1656-1664. doi: 10.1007/s43032-020-00196-5.
doi: 10.1007/s43032-020-00196-5 pmid: 32430712 |
[36] |
Qiu Y, Shen J, Jiang W, et al. Sphingosine 1-phosphate and its regulatory role in vascular endothelial cells[J]. Histol Histopathol, 2022, 37(3):213-225. doi: 10.14670/HH-18-428.
doi: 10.14670/HH-18-428 |
[37] |
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury[J]. Int J Mol Sci, 2022, 23(7):4010. doi: 10.3390/ijms23074010.
doi: 10.3390/ijms23074010 |
[38] |
Quinville BM, Deschenes NM, Ryckman AE, et al. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis[J]. Int J Mol Sci, 2021, 22(11):5793. doi: 10.3390/ijms22115793.
doi: 10.3390/ijms22115793 |
[39] |
Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy[J]. Cell Signal, 2021, 85:110041. doi: 10.1016/j.cellsig.2021.110041.
doi: 10.1016/j.cellsig.2021.110041 |
[40] |
Kagan T, Stoyanova G, Lockshin RA, et al. Ceramide from sphingomyelin hydrolysis induces neuronal differentiation, whereas de novo ceramide synthesis and sphingomyelin hydrolysis initiate apoptosis after NGF withdrawal in PC12 Cells[J]. Cell Commun Signal, 2022, 20(1):15. doi: 10.1186/s12964-021-00767-2.
doi: 10.1186/s12964-021-00767-2 pmid: 35101031 |
[41] |
Guijas C, Montenegro-Burke JR, Warth B, et al. Metabolomics activity screening for identifying metabolites that modulate phenotype[J]. Nat Biotechnol, 2018, 36(4):316-320. doi: 10.1038/nbt.4101.
doi: 10.1038/nbt.4101 pmid: 29621222 |
[1] | SU Hai-qi, LI Lei. Advances in Methylation Detection for Ovarian Cancer Screening and Diagnosis [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 366-369. |
[2] | MENG Fei, LIU Hui-qiang. The Role of Exosomes from Different Sources in Pathogenesis and Treatment of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 10-14. |
[3] | FENG Dan, SHEN Fu-jin. Efficacy Evaluation of Neoadjuvant Chemotherapy for Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 529-534. |
[4] | PING Quan-hong, LI Na, HU Yuan-jing. Application of Metabonomics in the Treatment and Prognosis of Common Gynecological Tumors [J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 361-365. |
[5] | GE Yan-jun, ZHANG Yu-chen, WANG Xin-tao, ZHU Hai-yan. The Role of Metabolomics in Cervical Cancer Screening and Early Diagnosis [J]. Journal of International Obstetrics and Gynecology, 2022, 49(3): 302-306. |
[6] | SUN Xiu-li, ZHANG Guang-mei. Research Progress of Diagnostic Markers for Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2021, 48(5): 579-582. |
[7] | QIN Zhao-juan, DU Yi, ZHENG Ai. Progress of Circulating Tumor Cell in the Diagnosis and Treatment of Epithelial Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2021, 48(4): 448-452. |
[8] | WEN Ning-ning, DU Juan. Advances in Research on Misfolded Protein and Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 247-250. |
[9] | LIU Hong-yu, ZHAO Xiu-bao, LIU Wei. Analysis of the Efficacy of Plasma Exchange Combined with Hemodialysis on Three Cases of Postpartum Hemolytic Uremic Syndrome [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 264-267. |
[10] | JIANG Ming-bo, ZHANG Yao, CAO Yu, HUANG Jian, LI Yao-qi, TENG Hong. A Case of Maternal Death Caused by HELLP Syndrome Complicated with Hepatic Infarction and A Review of the Literature [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 268-271. |
[11] | HONG Ya-yi, TANG Xiao-han, LU Mei-song. Research Progress of MicroRNA in Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 277-280. |
[12] | LI He-tong, WANG Wei, HAO Min. Progress of CircRNAs as A Promising Biomarker and Therapeutic Target for Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 322-327. |
[13] | WANG Jun, YU Cai-xian, WANG Xia, LI Zheng. Research Progress of MiR-144 in Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 328-332. |
[14] | XIN Yu-qi, TIAN Lei, WANG Xiao-hui. Research Progress on the Role of Long Non-Coding RNA in the Occurrence and Development of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2021, 48(1): 41-46. |
[15] | JIANG Mei, YUE Wen-tao. Research Progress of Biomarkers Related to Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2021, 48(1): 5-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||