国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (1): 56-59.doi: 10.12280/gjfckx.20210595
收稿日期:
2021-06-23
出版日期:
2022-02-15
发布日期:
2022-03-02
通讯作者:
王永红
E-mail:wangyh19672000@126.com
基金资助:
ZHAO Yu-lin, WANG Yong-hong△()
Received:
2021-06-23
Published:
2022-02-15
Online:
2022-03-02
Contact:
WANG Yong-hong
E-mail:wangyh19672000@126.com
摘要:
子痫前期是孕产妇致病和死亡的主要原因之一,其发病机制可能与子宫螺旋小动脉重铸不足、炎症免疫过度激活和血管内皮细胞受损等因素有关。近期研究表明,胎盘来源的微粒(microparticle)可增加子痫前期患者血清中核因子κB(nuclear factor- kappaB,NF-κB)的表达,并促进中性粒细胞外诱捕网(neutrophil extracellular trap,NET)形成,从而引起母胎界面的炎症反应与血管内皮细胞功能障碍,参与子痫前期的病理生理过程。
赵钰林, 王永红. 核因子κB在子痫前期发病机制中的研究进展[J]. 国际妇产科学杂志, 2022, 49(1): 56-59.
ZHAO Yu-lin, WANG Yong-hong. Research Progress of NF-κB in the Pathogenesis of Pre-Eclampsia[J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 56-59.
[1] |
Gatford KL, Andraweera PH, Roberts CT, et al. Animal Models of Preeclampsia: Causes, Consequences, and Interventions[J]. Hypertension, 2020, 75(6):1363-1381. doi: 10.1161/HYPERTENSIONAHA.119.14598.
doi: 10.1161/HYPERTENSIONAHA.119.14598 |
[2] |
Armaly Z, Jadaon JE, Jabbour A, et al. Preeclampsia: Novel Mechanisms and Potential Therapeutic Approaches[J]. Front Physiol, 2018, 9:973. doi: 10.3389/fphys.2018.00973.
doi: 10.3389/fphys.2018.00973 pmid: 30090069 |
[3] |
Eddy AC, Howell JA, Chapman H, et al. Biopolymer-Delivered, Maternally Sequestered NF-κB (Nuclear Factor-κB) Inhibitory Peptide for Treatment of Preeclampsia[J]. Hypertension, 2020, 75(1):193-201. doi: 10.1161/HYPERTENSIONAHA.119.13368.
doi: 10.1161/HYPERTENSIONAHA.119.13368 |
[4] |
Chaiworapongsa T, Chaemsaithong P, Yeo L, et al. Pre-eclampsia part 1: current understanding of its pathophysiology[J]. Nat Rev Nephrol, 2014, 10(8):466-480. doi: 10.1038/nrneph.2014.102.
doi: 10.1038/nrneph.2014.102 pmid: 25003615 |
[5] |
Moodley M, Moodley J, Naicker T. The Role of Neutrophils and Their Extracellular Traps in the Synergy of Pre-eclampsia and HIV Infection[J]. Curr Hypertens Rep, 2020, 22(6):41. doi: 10.1007/s11906-020-01047-z.
doi: 10.1007/s11906-020-01047-z |
[6] |
Jiang L, Ren L, Zhang X, et al. Overexpression of PIMREG promotes breast cancer aggressiveness via constitutive activation of NF-κB signaling[J]. EBioMedicine, 2019, 43:188-200. doi: 10.1016/j.ebiom.2019.04.001.
doi: S2352-3964(19)30235-X pmid: 30979686 |
[7] |
Khurana N, Dodhiawala PB, Bulle A, et al. Deciphering the Role of Innate Immune NF-κB Pathway in Pancreatic Cancer[J]. Cancers(Basel), 2020, 12(9):2675. doi: 10.3390/cancers12092675.
doi: 10.3390/cancers12092675 |
[8] |
Thoma A, Lightfoot AP. NF-κB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy[J]. Adv Exp Med Biol, 2018, 1088:267-279. doi: 10.1007/978-981-13-1435-3_12.
doi: 10.1007/978-981-13-1435-3_12 |
[9] |
Kanigur Sultuybek G, Soydas T, Yenmis G. NF-κB as the mediator of metformin′s effect on ageing and ageing-related diseases[J]. Clin Exp Pharmacol Physiol, 2019, 46(5):413-422. doi: 10.1111/1440-1681.13073.
doi: 10.1111/1440-1681.13073 |
[10] |
Sakowicz A, Bralewska M, Pietrucha T, et al. Canonical, Non-Canonical and Atypical Pathways of Nuclear Factor κB Activation in Preeclampsia[J]. Int J Mol Sci, 2020, 21(15):5574. doi: 10.3390/ijms21155574.
doi: 10.3390/ijms21155574 |
[11] |
Armistead B, Kadam L, Drewlo S, et al. The Role of NFκB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight[J]. Int J Mol Sci, 2020, 21(5):1775. doi: 10.3390/ijms21051775.
doi: 10.3390/ijms21051775 |
[12] |
Socha MW, Malinowski B, Puk O, et al. The Role of NF-κB in Uterine Spiral Arteries Remodeling, Insight into the Cornerstone of Preeclampsia[J]. Int J Mol Sci, 2021, 22(2):704. doi: 10.3390/ijms22020704.
doi: 10.3390/ijms22020704 |
[13] |
Walsh SW, Nugent WH, Al Dulaimi M, et al. Proteases Activate Pregnancy Neutrophils by a Protease-Activated Receptor 1 Pathway: Epigenetic Implications for Preeclampsia[J]. Reprod Sci, 2020, 27(11):2115-2127. doi: 10.1007/s43032-020-00232-4.
doi: 10.1007/s43032-020-00232-4 |
[14] |
Kim S, Lee KS, Choi S, et al. NF-κB-responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase[J]. J Biol Chem, 2018, 293(49):18989-19000. doi: 10.1074/jbc.RA118.005197.
doi: 10.1074/jbc.RA118.005197 |
[15] |
Zheng L, Shi L, Zhou Z, et al. Placental expression of AChE, α7nAChR and NF-κB in patients with preeclampsia[J]. Ginekol Pol, 2018, 89(5):249-255. doi: 10.5603/GP.a2018.0043.
doi: 10.5603/GP.a2018.0043 |
[16] |
Sha H, Ma Y, Tong Y, et al. Apocynin inhibits placental TLR4/NF-κB signaling pathway and ameliorates preeclampsia-like symptoms in rats[J]. Pregnancy Hypertens, 2020, 22:210-215. doi: 10.1016/j.preghy.2020.10.006.
doi: 10.1016/j.preghy.2020.10.006 |
[17] |
Levine L, Habertheuer A, Ram C, et al. Syncytiotrophoblast extracellular microvesicle profiles in maternal circulation for noninvasive diagnosis of preeclampsia[J]. Sci Rep, 2020, 10(1):6398. doi: 10.1038/s41598-020-62193-7.
doi: 10.1038/s41598-020-62193-7 pmid: 32286341 |
[18] |
Han X, Li T, Li Y, et al. Exercise and Circulating Microparticles in Healthy Subjects[J]. J Cardiovasc Transl Res, 2021, 14(5):841-856. doi: 10.1007/s12265-021-10100-4.
doi: 10.1007/s12265-021-10100-4 |
[19] |
Cronqvist T, Erlandsson L, Tannetta D, et al. Placental syncytiotrophoblast extracellular vesicles enter primary endothelial cells through clathrin-mediated endocytosis[J]. Placenta, 2020, 100:133-141. doi: 10.1016/j.placenta.2020.07.006.
doi: S0143-4004(20)30196-X pmid: 32980046 |
[20] |
Hu Y, Li H, Yan R, et al. Increased Neutrophil Activation and Plasma DNA Levels in Patients with Pre-Eclampsia[J]. Thromb Haemost, 2018, 118(12):2064-2073. doi: 10.1055/s-0038-1675788.
doi: 10.1055/s-0038-1675788 |
[21] |
Hu Y, Yan R, Zhang C, et al. High-Mobility Group Box 1 From Hypoxic Trophoblasts Promotes Endothelial Microparticle Production and Thrombophilia in Preeclampsia[J]. Arterioscler Thromb Vasc Biol, 2018, 38(6):1381-1391. doi: 10.1161/ATVBAHA.118.310940.
doi: 10.1161/ATVBAHA.118.310940 |
[22] |
Wang Y, Liu J, Chen X, et al. Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-κB and IL-1β signal pathways[J]. J Cell Mol Med, 2019, 23(1):476-486. doi: 10.1111/jcmm.13950.
doi: 10.1111/jcmm.13950 |
[23] |
Boisramé-Helms J, Meziani F, Sananès N, et al. Detrimental arterial inflammatory effect of microparticles circulating in preeclamptic women: ex vivo evaluation in human arteries[J]. Fundam Clin Pharmacol, 2015, 29(5):450-461. doi: 10.1111/fcp.12136.
doi: 10.1111/fcp.12136 |
[24] |
Giannella A, Ceolotto G, Radu CM, et al. PAR-4/Ca(2+)-calpain pathway activation stimulates platelet-derived microparticles in hyperglycemic type 2 diabetes[J]. Cardiovasc Diabetol, 2021, 20(1):77. doi: 10.1186/s12933-021-01267-w.
doi: 10.1186/s12933-021-01267-w |
[25] |
Constantinescu AA, Gleizes C, Alhosin M, et al. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis[J]. J Cyst Fibros, 2014, 13(2):219-226. doi: 10.1016/j.jcf.2013.08.012.
doi: 10.1016/j.jcf.2013.08.012 pmid: 24095207 |
[26] |
Cheng G, Shan XF, Wang XL, et al. Endothelial damage effects of circulating microparticles from patients with stable angina are reduced by aspirin through ERK/p38 MAPKs pathways[J]. Cardiovasc Ther, 2017, 35(4):e12273. doi: 10.1111/1755-5922.12273.
doi: 10.1111/1755-5922.12273 |
[27] |
Lawlor C, O′Connor G, O′Leary S, et al. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing[J]. PLoS One, 2016, 11(2):e0149167. doi: 10.1371/journal.pone.0149167.
doi: 10.1371/journal.pone.0149167 |
[28] |
胡梦婷, 王永红. 微粒诱导中性粒细胞活化导致血管内皮损伤的研究进展[J]. 国际妇产科学杂志, 2020, 47(4):369-372,383. doi: 10.3969/j.issn.1674-1870.2020.04.002.
doi: 10.3969/j.issn.1674-1870.2020.04.002 |
[29] |
Klopf J, Brostjan C, Eilenberg W, et al. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and Inflammatory Disease[J]. Int J Mol Sci, 2021, 22(2):559. doi: 10.3390/ijms22020559.
doi: 10.3390/ijms22020559 |
[30] |
Konečná B, Lauková L, Vlková B. Immune activation by nucleic acids: A role in pregnancy complications[J]. Scand J Immunol, 2018, 87(4):e12651. doi: 10.1111/sji.12651.
doi: 10.1111/sji.12651 |
[31] |
Vokalova L, Balogh A, Toth E, et al. Placental Protein 13 (Galectin-13) Polarizes Neutrophils Toward an Immune Regulatory Phenotype[J]. Front Immunol, 2020, 11:145. doi: 10.3389/fimmu.2020.00145.
doi: 10.3389/fimmu.2020.00145 pmid: 32117288 |
[32] |
Moodley M, Moodley J, Naicker T. Neutrophil extracellular traps: The synergy source in the placentae of HIV infected women with pre-eclampsia[J]. Pregnancy Hypertens, 2020, 20:69-74. doi: 10.1016/j.preghy.2020.03.007.
doi: 10.1016/j.preghy.2020.03.007 |
[33] |
Tonello S, Rizzi M, Migliario M, et al. Low concentrations of neutrophil extracellular traps induce proliferation in human keratinocytes via NF-κB activation[J]. J Dermatol Sci, 2017, 88(1):110-116. doi: 10.1016/j.jdermsci.2017.05.010.
doi: 10.1016/j.jdermsci.2017.05.010 |
[34] |
Carmona-Rivera C, Khaznadar SS, Shwin KW, et al. Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2[J]. Blood, 2019, 134(4):395-406. doi: 10.1182/blood.2018892752.
doi: 10.1182/blood.2018892752 pmid: 31015188 |
[35] |
Lou H, Wojciak-Stothard B, Ruseva MM, et al. Autoantibody-dependent amplification of inflammation in SLE[J]. Cell Death Dis, 2020, 11(9):729. doi: 10.1038/s41419-020-02928-6.
doi: 10.1038/s41419-020-02928-6 |
[36] |
Wan R, Jiang J, Hu C, et al. Neutrophil extracellular traps amplify neutrophil recruitment and inflammation in neutrophilic asthma by stimulating the airway epithelial cells to activate the TLR4/ NF-κB pathway and secrete chemokines[J]. Aging(Albany NY), 2020, 12(17):16820-16836. doi: 10.18632/aging.103479.
doi: 10.18632/aging.103479 |
[37] |
An Z, Li J, Yu J, et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages[J]. Cell Cycle, 2019, 18(21):2928-2938. doi: 10.1080/15384101.2019.1662678.
doi: 10.1080/15384101.2019.1662678 |
[38] |
乔国栋, 王永红. 中性粒细胞胞外诱捕网的形成及其在生殖相关疾病中的作用[J]. 国际生殖健康/计划生育杂志, 2021, 40(3):260-264. doi: 10.12280/gjszjk.20200457.
doi: 10.12280/gjszjk.20200457 |
[1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
[2] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
[3] | 陈淑琳, 乔峤. 阴道上皮损伤修复与微生态环境的关系[J]. 国际妇产科学杂志, 2025, 52(1): 52-56. |
[4] | 王晶, 王永红. 蜕膜自然杀伤细胞在子痫前期发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 88-93. |
[5] | 张雯, 刘慧强. SOCS1与外泌体微小RNA在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 94-98. |
[6] | 王一丹, 王永红. 转化生长因子-β超家族在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 99-104. |
[7] | 樊博扬, 胡丽燕. 双胎妊娠合并子痫前期发病机制及预测方法研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 611-615. |
[8] | 邓玲玲, 伍绍文, 张为远. 小剂量阿司匹林在子痫前期预防中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 515-518. |
[9] | 张琦, 王新, 任毅, 刘超, 高慧婕. SLRPs在胎盘发育及妊娠相关疾病中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 525-530. |
[10] | 任毅, 胡玉莲, 王新, 张琦, 刘超, 高慧婕. 子痫前期的中药临床应用与现代药理学进展[J]. 国际妇产科学杂志, 2024, 51(4): 442-447. |
[11] | 赵丽霞, 王小青. 硫酸镁在子痫前期治疗中的争议及其不良反应[J]. 国际妇产科学杂志, 2024, 51(4): 448-452. |
[12] | 吴志韦, 林雪燕, 张雪芹, 杨梅琳. 子痫前期预防、预测的现状与关注焦点[J]. 国际妇产科学杂志, 2024, 51(3): 312-316. |
[13] | 张春双, 董晓真, 周昌荣, 王懿珊, 栗河舟. 宫内治疗胎儿胸腔积液合并水肿并发镜像综合征一例[J]. 国际妇产科学杂志, 2024, 51(3): 357-360. |
[14] | 彭兰, 柏婷, 周丽屏, 虞燕霞. 生物节律与子痫前期的相关性[J]. 国际妇产科学杂志, 2024, 51(2): 157-160. |
[15] | 陈嘉颖, 冯亚玲. 蛋白质翻译后修饰在子痫前期发病机制中的研究进展[J]. 国际妇产科学杂志, 2024, 51(1): 1-4. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||