国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (4): 393-397.doi: 10.12280/gjfckx.20211154
收稿日期:
2021-12-17
出版日期:
2022-08-15
发布日期:
2022-08-19
通讯作者:
任芳
E-mail:renfang@foxmail.com
基金资助:
HAN Pin, WEN Jing, LIU Yu-chen, SUN Yi, WANG Yuan-pei, REN Fang()
Received:
2021-12-17
Published:
2022-08-15
Online:
2022-08-19
Contact:
REN Fang
E-mail:renfang@foxmail.com
摘要:
宫颈癌是全球女性癌症相关死亡的第四大原因。对于复发或转移性宫颈癌,5年生存率仅有17%,这促使临床医生探索新的治疗方案。程序性死亡-1(programmed death-1,PD-1)/程序性死亡配体-1(programmed death ligand-1,PD-L1)抑制剂作为一种免疫治疗手段,在复发或转移性宫颈癌中已表现出一定的优势,但临床数据质量有待进一步提高。研究表明抗血管生成类药物、放化疗的应用可协同PD-1/PD-L1抑制剂的抗癌活性。回顾性梳理总结PD-1/PD-L1抑制剂用于宫颈癌的理论基础及应用现状、联合其他治疗模式的临床试验,以期改善晚期宫颈癌患者的生存预后,讨论并发的免疫相关不良反应和疗效评估指标,以便更好地管理不良反应、指导临床用药。
韩品, 温静, 刘雨晨, 孙怡, 王元培, 任芳. PD-1/PD-L1抑制剂治疗复发或转移性宫颈癌的研究进展[J]. 国际妇产科学杂志, 2022, 49(4): 393-397.
HAN Pin, WEN Jing, LIU Yu-chen, SUN Yi, WANG Yuan-pei, REN Fang. Research Progress of PD-1/PD-L1 Inhibitors in Patients with Recurrent or Metastatic Cervical Cancer[J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 393-397.
[1] |
王玲, 王志莲. DKK3、Wnt/β-连环蛋白信号通路与宫颈癌关系的研究进展[J]. 国际妇产科学杂志, 2021, 48(5):539-542. doi: 10.12280/gjfckx.20201169.
doi: 10.12280/gjfckx.20201169 |
[2] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[3] |
苏雅婷, 吕杰, 牛雯娟, 等. PD-L1、B7-H3及B7-H4在宫颈癌免疫治疗中的研究进展[J]. 国际妇产科学杂志, 2021, 48(4):457-461. doi: 10.12280/gjfckx.20201027.
doi: 10.12280/gjfckx.20201027 |
[4] |
巨宇叶, 张芳芳, 王晓慧. 复发性宫颈癌的治疗现状及进展[J]. 国际妇产科学杂志, 2021, 48(1):56-60. doi: 10.12280/gjfckx.20200695.
doi: 10.12280/gjfckx.20200695 |
[5] |
He X, Xu C. Immune checkpoint signaling and cancer immunotherapy[J]. Cell Res, 2020, 30(8):660-669. doi: 10.1038/s41422-020-0343-4.
doi: 10.1038/s41422-020-0343-4 |
[6] |
Chen Y, Pei Y, Luo J, et al. Looking for the Optimal PD-1/PD-L1 Inhibitor in Cancer Treatment: A Comparison in Basic Structure, Function, and Clinical Practice[J]. Front Immunol, 2020, 11:1088. doi: 10.3389/fimmu.2020.01088.
doi: 10.3389/fimmu.2020.01088 pmid: 32547566 |
[7] | Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 2020, 10(3):727-742. |
[8] |
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2[J]. J Exp Med, 2012, 209(6):1201-1217. doi: 10.1084/jem.20112741.
doi: 10.1084/jem.20112741 |
[9] |
Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy[J]. Science, 2020, 367(6477):eaax0182. doi: 10.1126/science.aax0182.
doi: 10.1126/science.aax0182 |
[10] |
Patsoukis N, Brown J, Petkova V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation[J]. Sci Signal, 2012, 5(230):ra46. doi: 10.1126/scisignal.2002796.
doi: 10.1126/scisignal.2002796 |
[11] |
Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway[J]. N Engl J Med, 2016, 375(18):1767-1778. doi: 10.1056/NEJMra1514296.
doi: 10.1056/NEJMra1514296 |
[12] |
Allouch S, Malki A, Allouch A, et al. High-Risk HPV Oncoproteins and PD-1/PD-L1 Interplay in Human Cervical Cancer: Recent Evidence and Future Directions[J]. Front Oncol, 2020, 10:914. doi: 10.3389/fonc.2020.00914.
doi: 10.3389/fonc.2020.00914 |
[13] |
Liu C, Lu J, Tian H, et al. Increased expression of PD-L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity[J]. Mol Med Rep, 2017, 15(3):1063-1070. doi: 10.3892/mmr.2017.6102.
doi: 10.3892/mmr.2017.6102 |
[14] |
Chung HC, Ros W, Delord JP, et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study[J]. J Clin Oncol, 2019, 37(17):1470-1478. doi: 10.1200/JCO.18.01265.
doi: 10.1200/JCO.18.01265 |
[15] |
Naumann RW, Hollebecque A, Meyer T, et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial[J]. J Clin Oncol, 2019, 37(31):2825-2834. doi: 10.1200/JCO.19.00739.
doi: 10.1200/JCO.19.00739 pmid: 31487218 |
[16] |
Yetkin-Arik B, Kastelein AW, Klaassen I, et al. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188446. doi: 10.1016/j.bbcan.2020.188446.
doi: 10.1016/j.bbcan.2020.188446 |
[17] |
Yi M, Jiao D, Qin S, et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment[J]. Mol Cancer, 2019, 18(1):60. doi: 10.1186/s12943-019-0974-6.
doi: 10.1186/s12943-019-0974-6 |
[18] |
Lan C, Shen J, Wang Y, et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial[J]. J Clin Oncol, 2020, 38(34):4095-4106. doi: 10.1200/JCO.20.01920.
doi: 10.1200/JCO.20.01920 |
[19] |
Galluzzi L, Humeau J, Buqué A, et al. Immunostimulation with chemotherapy in the era of Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm,immune checkpoint inhibitors[J]. Nat Rev Clin Oncol, 2020, 17(12):725-741. doi: 10.1038/s41571-020-0413-z.
doi: 10.1038/s41571-020-0413-z |
[20] |
Lyu M, Shen Y, Beharee N, et al. The Combined Use of Chemotherapy and Radiotherapy with PD-1 Inhibitor, Pembrolizumab, in Advanced Cervical Cancer: A Case Report[J]. Onco Targets Ther, 2020, 13:4465-4471. doi: 10.2147/OTT.S245190.
doi: 10.2147/OTT.S245190 |
[21] |
Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer[J]. N Engl J Med, 2021, 385(20):1856-1867. doi: 10.1056/NEJMoa2112435.
doi: 10.1056/NEJMoa2112435 |
[22] |
MOLE RH. Whole body irradiation; radiobiology or medicine?[J]. Br J Radiol, 1953, 26(305):234-241. doi: 10.1259/0007-1285-26-305-234.
doi: 10.1259/0007-1285-26-305-234 |
[23] |
Brooks ED, Chang JY. Time to abandon single-site irradiation for inducing abscopal effects[J]. Nat Rev Clin Oncol, 2019, 16(2):123-135. doi: 10.1038/s41571-018-0119-7.
doi: 10.1038/s41571-018-0119-7 pmid: 30401936 |
[24] |
Lotfi N, Thome R, Rezaei N, et al. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update[J]. Front Immunol, 2019, 10:1265. doi: 10.3389/fimmu.2019.01265.
doi: 10.3389/fimmu.2019.01265 |
[25] |
Kelley RK, Mitchell E, Behr S, et al. Phase II trial of pembrolizumab (PEM) plus granulocyte macrophage colony stimulating factor (GM-CSF) in advanced biliary cancers (ABC)[J]. J Clin Oncol, 2018, 36(Suppl 4):386. doi: 10.1200/JCO.2018.36.15_suppl.4087.
doi: 10.1200/JCO.2018.36.15_suppl.4087 |
[26] |
Vilalta M, Brune J, Rafat M, et al. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration[J]. Clin Exp Metastasis, 2018, 35(4):247-254. doi: 10.1007/s10585-018-9877-y.
doi: 10.1007/s10585-018-9877-y |
[27] |
Kong Y, Zhao X, Zou L, et al. PD-1 inhibitor combined with radiotherapy and GM-CSF as salvage therapy in patients with chemotherapy-refractory metastatic solid tumors[J]. J Clin Oncol, 2020, 38(Suppl 15):e15173. doi: 10.1200/JCO.2020.38.15_suppl.e15173.
doi: 10.1200/JCO.2020.38.15_suppl.e15173 |
[28] |
Youn JW, Hur SY, Woo JW, et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial[J]. Lancet Oncol, 2020,21(12):1653-1660. doi: 10.1016/S1470-2045(20)30486-1.
doi: 10.1016/S1470-2045(20)30486-1 |
[29] |
Mayadev J, Nunes AT, Li M, et al. CALLA: Efficacy and safety of concurrent and adjuvant durvalumab with chemoradiotherapy versus chemoradiotherapy alone in women with locally advanced cervical cancer: a phase III, randomized, double-blind, multicenter study[J]. Int J Gynecol Cancer, 2020, 30(7):1065-1070. doi: 10.1136/ijgc-2019-001135.
doi: 10.1136/ijgc-2019-001135 pmid: 32447296 |
[30] |
Xu C, Chen YP, Du XJ, et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis[J]. BMJ, 2018, 363:k4226. doi: 10.1136/bmj.k4226.
doi: 10.1136/bmj.k4226 |
[31] |
Ramos-Casals M, Brahmer JR, Callahan MK, et al. Immune-related adverse events of checkpoint inhibitors[J]. Nat Rev Dis Primers, 2020, 6(1):38. doi: 10.1038/s41572-020-0160-6.
doi: 10.1038/s41572-020-0160-6 pmid: 32382051 |
[32] |
Esfahani K, Elkrief A, Calabrese C, et al. Moving towards personalized treatments of immune-related adverse events[J]. Nat Rev Clin Oncol, 2020, 17(8):504-515. doi: 10.1038/s41571-020-0352-8.
doi: 10.1038/s41571-020-0352-8 |
[33] |
Ren D, Hua Y, Yu B, et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy[J]. Mol Cancer, 2020, 19(1):19. doi: 10.1186/s12943-020-1144-6.
doi: 10.1186/s12943-020-1144-6 |
[34] |
Zhao P, Li L, Jiang X, et al. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy[J]. J Hematol Oncol, 2019, 12(1):54. doi: 10.1186/s13045-019-0738-1.
doi: 10.1186/s13045-019-0738-1 |
[35] |
Fumet JD, Truntzer C, Yarchoan M, et al. Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts[J]. Eur J Cancer, 2020, 131:40-50. doi: 10.1016/j.ejca.2020.02.038.
doi: 10.1016/j.ejca.2020.02.038 |
[36] |
Jiang X, Wu H, Zhao W, et al. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells[J]. Cancer Cell Int, 2019, 19:68. doi: 10.1186/s12935-019-0789-y.
doi: 10.1186/s12935-019-0789-y |
[1] | 郭竞, 张茂祥, 周春鹤, 刘思宁, 李惠艳. 孟德尔随机化在暴露因素与宫颈癌因果关系中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 169-174. |
[2] | 柴玲娜, 李艳丽, 石洁, 高晗, 欧阳夕颜, 程诗语. 吲哚菁绿示踪前哨淋巴结在早期宫颈癌中的应用[J]. 国际妇产科学杂志, 2025, 52(2): 175-179. |
[3] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[4] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[5] | 胡明珠, 刘丽文, 黄蕾. HIV感染女性的阴道微生态变化与宫颈癌的相关研究[J]. 国际妇产科学杂志, 2025, 52(1): 13-18. |
[6] | 李楠, 彭二玄, 刘风花. 卵巢上皮性癌脑转移20例临床分析[J]. 国际妇产科学杂志, 2025, 52(1): 23-27. |
[7] | 张野, 陈巧云, 赵佳怡, 陈璐, 刘建荣. 纳米微球在宫颈癌预防与治疗中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 8-12. |
[8] | 魏金花, 祁玉超, 沈晓亚. 1992—2021年基于年龄-时期-队列模型的中国宫颈癌发病和死亡分析[J]. 国际妇产科学杂志, 2024, 51(6): 664-668. |
[9] | 刘昱, 吴瑞芳, 李瑞珍. 宫颈癌ⅠB2期新辅助化疗根治性宫颈切除术后再妊娠一例[J]. 国际妇产科学杂志, 2024, 51(6): 669-671. |
[10] | 宋翰, 刘晗黎, 王希波. 宫颈癌背部软组织转移一例[J]. 国际妇产科学杂志, 2024, 51(6): 672-675. |
[11] | 王晶, 王晓慧. 宫颈癌肉瘤一例并文献复习[J]. 国际妇产科学杂志, 2024, 51(5): 597-600. |
[12] | 张婷婷, 俞萍源, 陈曦, 郑铎, 杨永秀. 原发性卵巢类癌合并肝转移一例[J]. 国际妇产科学杂志, 2024, 51(4): 380-383. |
[13] | 张蓝月, 申复进. 过继性细胞免疫治疗在宫颈癌中的研究进展[J]. 国际妇产科学杂志, 2024, 51(3): 253-257. |
[14] | 张纹, 王雪倩, 石玉香, 黄增发, 田训. 宫颈腺样囊性癌合并基底细胞癌及鳞状细胞癌一例[J]. 国际妇产科学杂志, 2024, 51(3): 258-262. |
[15] | 王芳, 贾泽南, 郑婧, 王惠玲, 朱宝玉, 吴珍珍, 刘青. 妊娠合并宫颈大细胞神经内分泌癌和低钠血症一例[J]. 国际妇产科学杂志, 2024, 51(2): 198-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||