国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (1): 1-5.doi: 10.12280/gjfckx.20220438
• 妇科肿瘤研究:综述 • 下一篇
收稿日期:
2022-06-01
出版日期:
2023-02-15
发布日期:
2023-03-02
通讯作者:
马晓欣,E-mail: 基金资助:
WEN Xin, WANG Bo, MA Xiao-xin△()
Received:
2022-06-01
Published:
2023-02-15
Online:
2023-03-02
Contact:
MA Xiao-xin, E-mail: 摘要:
子宫内膜癌是一种子宫内膜上皮源性的恶性肿瘤。雌激素刺激、肥胖、糖尿病、高血压和未孕未产等因素是其发病的高危因素。近年研究发现,表观遗传修饰在子宫内膜癌中起重要作用。随着组蛋白甲基化修饰在子宫内膜癌中的研究逐渐深入,越来越多的研究发现组蛋白甲基化修饰作为基因转录的重要一环具有复杂的生物学行为。组蛋白甲基化相关的酶与癌症的发生密切相关,其可能通过调节启动子、增强子、外显子和重复序列等基因结构的组蛋白甲基化,使下游基因重编程,从而在子宫内膜癌的发生、发展及预后中发挥重要作用。未来有望通过靶向组蛋白甲基化相关的酶来调节基因的生物学行为,从而预防和治疗子宫内膜癌。
温馨, 王博, 马晓欣. 组蛋白甲基化修饰在子宫内膜癌中的研究进展[J]. 国际妇产科学杂志, 2023, 50(1): 1-5.
WEN Xin, WANG Bo, MA Xiao-xin. Research Progress of Histone Methylation Modification in Endometrial Carcinoma[J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 1-5.
[1] | WHO. The Global Cancer Observatory[EB/OL]. [2021-03]. https://gco.iarc.fr/today/data/factsheets/populations/160-china-fact-sheets.pdf. |
[2] |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5):584-590. doi: 10.1097/CM9.0000000000002108.
doi: 10.1097/CM9.0000000000002108 |
[3] |
Audia JE, Campbell RM. Histone Modifications and Cancer[J]. Cold Spring Harb Perspect Biol, 2016, 8(4):a019521. doi: 10.1101/cshperspect.a019521.
doi: 10.1101/cshperspect.a019521 |
[4] |
Gong F, Miller KM. Histone methylation and the DNA damage response[J]. Mutat Res Rev Mutat Res, 2019, 780:37-47. doi: 10.1016/j.mrrev.2017.09.003.
doi: 10.1016/j.mrrev.2017.09.003 pmid: 31395347 |
[5] |
Husmann D, Gozani O. Histone lysine methyltransferases in biology and disease[J]. Nat Struct Mol Biol, 2019, 26(10):880-889. doi: 10.1038/s41594-019-0298-7.
doi: 10.1038/s41594-019-0298-7 pmid: 31582846 |
[6] |
Zhang Y, Sun Z, Jia J, et al. Overview of Histone Modification[J]. Adv Exp Med Biol, 2021, 1283:1-16. doi: 10.1007/978-981-15-8104-5_1.
doi: 10.1007/978-981-15-8104-5_1 pmid: 33155134 |
[7] |
Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact[J]. Mol Cell, 2012, 48(4):491-507. doi: 10.1016/j.molcel.2012.11.006.
doi: 10.1016/j.molcel.2012.11.006 pmid: 23200123 |
[8] |
Yang C, Zhang J, Ma Y, et al. Histone methyltransferase and drug resistance in cancers[J]. J Exp Clin Cancer Res, 2020, 39(1):173. doi: 10.1186/s13046-020-01682-z.
doi: 10.1186/s13046-020-01682-z |
[9] |
Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development[J]. Nat Rev Mol Cell Biol, 2019, 20(10):625-641. doi: 10.1038/s41580-019-0151-1.
doi: 10.1038/s41580-019-0151-1 |
[10] |
Hsiao SM, Chen MW, Chen CA, et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer[J]. Ann Surg Oncol, 2015, 22(Suppl 3):S1556-S1565. doi: 10.1245/s10434-015-4379-5.
doi: 10.1245/s10434-015-4379-5 |
[11] |
Li M, Shi M, Xu Y, et al. Histone Methyltransferase KMT2D Regulates H3K4 Methylation and is Involved in the Pathogenesis of Ovarian Cancer[J]. Cell Transplant, 2021, 30:9636897211027521. doi: 10.1177/09636897211027521.
doi: 10.1177/09636897211027521 |
[12] |
Eich ML, Athar M, Ferguson JE 3rd, et al. EZH2-Targeted Therapies in Cancer: Hype or a Reality[J]. Cancer Res, 2020, 80(24):5449-5458. doi: doi: 10.1158/0008-5472.CAN-20-2147.
doi: 10.1158/0008-5472.CAN-20-2147 |
[13] |
Jarrold J, Davies CC. PRMTs and Arginine Methylation: Cancer′s Best-Kept Secret?[J]. Trends Mol Med, 2019, 25(11):993-1009. doi: 10.1016/j.molmed.2019.05.007.
doi: S1471-4914(19)30124-8 pmid: 31230909 |
[14] |
Beacon TH, Xu W, Davie JR. Genomic landscape of transcriptionally active histone arginine methylation marks, H3R2me2s and H4R3me2a, relative to nucleosome depleted regions[J]. Gene, 2020, 742:144593. doi: 10.1016/j.gene.2020.144593.
doi: 10.1016/j.gene.2020.144593 |
[15] |
Liu M, Yao B, Gui T, et al. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression[J]. Theranostics, 2020, 10(10):4437-4452. doi: 10.7150/thno.42047.
doi: 10.7150/thno.42047 pmid: 32292506 |
[16] |
Swahari V, West AE. Histone demethylases in neuronal differentiation, plasticity, and disease[J]. Curr Opin Neurobiol, 2019, 59:9-15. doi: 10.1016/j.conb.2019.02.009.
doi: S0959-4388(18)30222-8 pmid: 30878844 |
[17] |
Karakaidos P, Verigos J, Magklara A. LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target[J]. Cancers (Basel), 2019, 11(12):1821. doi: 10.3390/cancers11121821.
doi: 10.3390/cancers11121821 |
[18] |
Xu S, Wang S, Xing S, et al. KDM5A suppresses PML-RARα target gene expression and APL differentiation through repressing H3K4me2[J]. Blood Adv, 2021, 5(17):3241-3253. doi: 10.1182/bloodadvances.2020002819.
doi: 10.1182/bloodadvances.2020002819 pmid: 34448811 |
[19] |
Xhabija B, Kidder BL. KDM5B is a master regulator of the H3K4-methylome in stem cells, development and cancer[J]. Semin Cancer Biol, 2019, 57:79-85. doi: 10.1016/j.semcancer.2018.11.001.
doi: S1044-579X(18)30073-7 pmid: 30448242 |
[20] |
Halsall JA, Andrews S, Krueger F, et al. Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle[J]. Sci Rep, 2021, 11(1):3009. doi: 10.1038/s41598-021-82539-z.
doi: 10.1038/s41598-021-82539-z pmid: 33542322 |
[21] |
Segelle A, Núñez-Álvarez Y, Oldfield AJ, et al. Histone marks regulate the epithelial-to-mesenchymal transition via alternative splicing[J]. Cell Rep, 2022, 38(7):110357. doi: 10.1016/j.celrep.2022.110357.
doi: 10.1016/j.celrep.2022.110357 |
[22] |
Geng H, Chen H, Wang H, et al. The Histone Modifications of Neuronal Plasticity[J]. Neural Plast, 2021, 2021:6690523. doi: 10.1155/2021/6690523.
doi: 10.1155/2021/6690523 |
[23] |
Cao J, Yan Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy[J]. Trends Cancer, 2020, 6(7):580-592. doi: 10.1016/j.trecan.2020.02.003.
doi: 10.1016/j.trecan.2020.02.003 |
[24] |
Krill L, Deng W, Eskander R, et al. Overexpression of enhance of Zeste homolog 2 (EZH2) in endometrial carcinoma: An NRG Oncology/Gynecologic Oncology Group Study[J]. Gynecol Oncol, 2020, 156(2):423-429. doi: 10.1016/j.ygyno.2019.12.003.
doi: S0090-8258(19)31795-0 pmid: 31843273 |
[25] |
Roh JW, Choi JE, Han HD, et al. Clinical and biological significance of EZH2 expression in endometrial cancer[J]. Cancer Biol Ther, 2020, 21(2):147-156. doi: 10.1080/15384047.2019.1672455.
doi: 10.1080/15384047.2019.1672455 |
[26] |
Gui T, Liu M, Yao B, et al. TCF3 is epigenetically silenced by EZH2 and DNMT3B and functions as a tumor suppressor in endometrial cancer[J]. Cell Death Differ, 2021, 28(12):3316-3328. doi: 10.1038/s41418-021-00824-w.
doi: 10.1038/s41418-021-00824-w pmid: 34175897 |
[27] |
Venkata PP, Chen Y, Alejo S, et al. KDM1A inhibition augments the efficacy of rapamycin for the treatment of endometrial cancer[J]. Cancer Lett, 2022, 524:219-231. doi: 10.1016/j.canlet.2021.10.019.
doi: 10.1016/j.canlet.2021.10.019 |
[28] |
Chi S, Liu Y, Zhou X, et al. Knockdown of long non-coding HOTAIR enhances the sensitivity to progesterone in endometrial cancer by epigenetic regulation of progesterone receptor isoform B[J]. Cancer Chemother Pharmacol, 2019, 83(2):277-287. doi: 10.1007/s00280-018-3727-0.
doi: 10.1007/s00280-018-3727-0 |
[29] |
Li L, Shou H, Wang Q, et al. Investigation of the potential theranostic role of KDM5B/miR-29c signaling axis in paclitaxel resistant endometrial carcinoma[J]. Gene, 2019, 694:76-82. doi: 10.1016/j.gene.2018.12.076.
doi: S0378-1119(19)30039-3 pmid: 30658067 |
[30] |
Qiu MT, Fan Q, Zhu Z, et al. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1[J]. Oncotarget, 2015, 6(31):31702-31720. doi: 10.18632/oncotarget.5165.
doi: 10.18632/oncotarget.5165 |
[31] |
Sheng Y, Wang H, Liu D, et al. Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma[J]. Gynecol Oncol, 2016, 140(1):145-151. doi: 10.1016/j.ygyno.2015.11.017.
doi: 10.1016/j.ygyno.2015.11.017 pmid: 26597461 |
[32] |
Inoue F, Sone K, Toyohara Y, et al. Histone arginine methyltransferase CARM1 selective inhibitor TP-064 induces apoptosis in endometrial cancer[J]. Biochem Biophys Res Commun, 2022, 601:123-128. doi: 10.1016/j.bbrc.2022.02.086.
doi: 10.1016/j.bbrc.2022.02.086 |
[1] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[2] | 邱婉宁, 魏瑗. 单卵双胎妊娠不一致异常的病因学研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 607-610. |
[3] | 何清, 胡红波. 人工智能在子宫内膜癌诊治中的应用与展望[J]. 国际妇产科学杂志, 2024, 51(5): 572-577. |
[4] | 苏海绮, 李雷. 甲基化检测用于卵巢癌筛查和诊断的研究进展[J]. 国际妇产科学杂志, 2024, 51(4): 366-369. |
[5] | 张益田, 李小丽. 线粒体在子宫内膜癌中的作用及治疗[J]. 国际妇产科学杂志, 2024, 51(4): 375-379. |
[6] | 闫海燕, 尹青青, 王梅, 张爱, 叶文凤, 李甜甜. 阔韧带子宫内膜样腺癌一例[J]. 国际妇产科学杂志, 2024, 51(4): 388-391. |
[7] | 郭希, 魏佳, 杨永秀. 导致子宫内膜疾病的激素通路及调节因素[J]. 国际妇产科学杂志, 2024, 51(4): 395-400. |
[8] | 司婧文, 于秀杰, 申彦. 2023版子宫内膜癌FIGO分期更新对病理诊断内容的影响[J]. 国际妇产科学杂志, 2024, 51(3): 241-246. |
[9] | 吴晓莉, 刘开江. 子宫内膜癌TCGA分子分型与治疗新进展[J]. 国际妇产科学杂志, 2024, 51(3): 247-252. |
[10] | 周琳, 袁琳, 万一聪, 张林, 程文俊, 姜旖. PARP抑制剂与免疫检查点抑制剂联合治疗在妇科恶性肿瘤中的应用[J]. 国际妇产科学杂志, 2024, 51(2): 206-209. |
[11] | 李英涛, 黄晓武. 子宫内膜取样方法的演变与进展[J]. 国际妇产科学杂志, 2024, 51(1): 105-109. |
[12] | 陈彦熹, 刘卉, 蒋鹏程. 以异常阴道出血为首发症状的肺腺癌子宫内膜转移一例并文献复习[J]. 国际妇产科学杂志, 2024, 51(1): 74-77. |
[13] | 陈晓静, 李雷. 子宫内膜癌筛查现状及研究进展[J]. 国际妇产科学杂志, 2023, 50(6): 644-649. |
[14] | 李振英, 孙晓彤, 邢广阳, 李晶晶, 柳婷婷, 张一凡. 鞘脂代谢与妇科良恶性疾病的研究进展[J]. 国际妇产科学杂志, 2023, 50(6): 649-654. |
[15] | 武霞, 晋雨楠, 范裕裕, 索玉平. Vimentin在常见妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2023, 50(6): 655-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||