[1] |
Zhang FL, Feng YQ, Wang JY, et al. Single cell epigenomic and transcriptomic analysis uncovers potential transcription factors regulating mitotic/meiotic switch[J]. Cell Death Dis, 2023, 14(2):134. doi: 10.1038/s41419-023-05671-w.
|
[2] |
Du R, Cheng X, Ji J, et al. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin[J]. Sci Rep, 2023, 13(1):4463. doi: 10.1038/s41598-023-31712-7.
pmid: 36932163
|
[3] |
Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]. Mol Cell, 2022, 82(12):2215-2227. doi: 10.1016/j.molcel.2022.03.022.
pmid: 35390277
|
[4] |
Zheng X, Liang Y, Zhang C. Ferroptosis Regulated by Hypoxia in Cells[J]. Cells, 2023, 12(7):1050. doi: 10.3390/cells12071050.
|
[5] |
Xia L, Shen Y, Liu S, et al. Iron overload triggering ECM-mediated Hippo/YAP pathway in follicle development: a hypothetical model endowed with therapeutic implications[J]. Front Endocrinol(Lausanne), 2023,14:1174817. doi: 10.3389/fendo.2023.1174817.
|
[6] |
Wang Y, Li C, Li J, et al. Non-Esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway[J]. Antioxidants(Basel), 2020, 9(6):523. doi: 10.3390/antiox9060523.
|
[7] |
Ding K, Liu C, Li L, et al. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism[J]. Chin Med J(Engl), 2023, 136(21):2521-2537. doi: 10.1097/CM9.0000000000002533.
|
[8] |
Zhao J, Tang M, Tang H, et al. Sphingosine 1-phosphate alleviates radiation-induced ferroptosis in ovarian granulosa cells by upregulating glutathione peroxidase 4[J]. Reprod Toxicol, 2023, 115:49-55. doi: 10.1016/j.reprotox.2022.12.002.
|
[9] |
Shi Q, Liu R, Chen L. Ferroptosis inhibitor ferrostatin-1 alleviates homocysteine-induced ovarian granulosa cell injury by regulating TET activity and DNA methylation[J]. Mol Med Rep, 2022, 25(4):130. doi: 10.3892/mmr.2022.12645.
|
[10] |
Xu S, Li X, Wang Y. Regulation of the p53-mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review)[J]. Exp Ther Med, 2023, 25(3):113. doi: 10.3892/etm.2023.11812.
|
[11] |
Chen GH, Song CC, Pantopoulos K, et al. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway[J]. Free Radic Biol Med, 2022, 180:95-107. doi: 10.1016/j.freeradbiomed.2022.01.012.
|
[12] |
郭婕, 王玉龙, 麦凤怡, 等. 铁自噬介导铁死亡机制和检测方法的研究进展[J]. 中国病理生理杂志, 2024, 40(2):365-374. doi: 10.3969/j.issn.1000-4718.2024.02.021.
|
[13] |
Wen J, Chen H, Ren Z, et al. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway[J]. Nano Converg, 2021, 8(1):10. doi: 10.1186/s40580-021-00260-z.
pmid: 33796911
|
[14] |
He H, Wang J, Mou X, et al. Selective autophagic degradation of ACLY (ATP citrate lyase) maintains citrate homeostasis and promotes oocyte maturation[J]. Autophagy, 2023, 19(1):163-179. doi: 10.1080/15548627.2022.2063005.
|
[15] |
Yao Y, Wang B, Jiang Y, et al. The mechanisms crosstalk and therapeutic opportunities between ferroptosis and ovary diseases[J]. Front Endocrinol(Lausanne), 2023,14:1194089. doi: 10.3389/fendo.2023.1194089.
|
[16] |
Qin X, Liang D, Hu M, et al. Chronic overload of concentration-dependent iron exerts different effects on ovarian function in C57BL/6J mice[J]. Biol Reprod, 2021, 104(6):1347-1359. doi: 10.1093/biolre/ioab040.
|
[17] |
Sze S, Zhang L, Zhang S, et al. Aberrant Transferrin and Ferritin Upregulation Elicits Iron Accumulation and Oxidative Inflammaging Causing Ferroptosis and Undermines Estradiol Biosynthesis in Aging Rat Ovaries by Upregulating NF-Κb-Activated Inducible Nitric Oxide Synthase: First Demonstration of an Intricate Mechanism[J]. Int J Mol Sci, 2022, 23(20):12689. doi: 10.3390/ijms232012689.
|
[18] |
Sharma A, Baddela VS, Becker F, et al. Elevated free fatty acids affect bovine granulosa cell function: a molecular cue for compromised reproduction during negative energy balance[J]. Endocr Connect, 2019, 8(5):493-505. doi: 10.1530/EC-19-0011.
pmid: 30925464
|
[19] |
Baddela VS, Sharma A, Vanselow J. Non-esterified fatty acids in the ovary: friends or foes?[J]. Reprod Biol Endocrinol, 2020, 18(1):60. doi: 10.1186/s12958-020-00617-9.
|
[20] |
Huang Y, Lv Y, Qi T, et al. Metabolic profile of women with premature ovarian insufficiency compared with that of age-matched healthy controls[J]. Maturitas, 2021, 148:33-39. doi: 10.1016/j.maturitas.2021.04.003.
pmid: 34024349
|
[21] |
Bhardwaj JK, Paliwal A, Saraf P, et al. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary[J]. J Cell Physiol, 2022, 237(2):1157-1170. doi: 10.1002/jcp.30613.
|
[22] |
Cui L, Bao H, Zhu W, et al. hUMSCs Transplantation Regulates AMPK/NR4A1 Signaling Axis to Inhibit Ovarian Fibrosis in POI Rats[J]. Stem Cell Rev Rep, 2023, 19(5):1449-1465. doi: 10.1007/s12015-022-10469-y.
|
[23] |
Hu W, Zhang Y, Wang D, et al. Iron Overload-Induced Ferroptosis Impairs Porcine Oocyte Maturation and Subsequent Embryonic Developmental Competence in vitro[J]. Front Cell Dev Biol, 2021,9:673291. doi: 10.3389/fcell.2021.673291.
|
[24] |
Wang X, Wei Y, Wei F, et al. Regulatory mechanism and research progress of ferroptosis in obstetrical and gynecological diseases[J]. Front Cell Dev Biol, 2023,11:1146971. doi: 10.3389/fcell.2023.1146971.
|
[25] |
Wang F, Liu Y, Ni F, et al. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency[J]. Nat Commun, 2022, 13(1):5871. doi: 10.1038/s41467-022-33323-8.
pmid: 36198708
|
[26] |
Zhang S, Liu Q, Chang M, et al. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis[J]. Cell Death Dis, 2023, 14(5):340. doi: 10.1038/s41419-023-05859-0.
pmid: 37225709
|
[27] |
Clark KL, George JW, Przygrodzka E, et al. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease[J]. Endocr Rev, 2022, 43(6):1074-1096. doi: 10.1210/endrev/bnac013.
pmid: 35596657
|
[28] |
Tang H, Jiang X, Hua Y, et al. NEDD4L facilitates granulosa cell ferroptosis by promoting GPX4 ubiquitination and degradation[J]. Endocr Connect, 2023, 12(4):e220459. doi: 10.1530/EC-22-0459.
|
[29] |
Niu C, Jiang D, Guo Y, et al. Spermidine suppresses oxidative stress and ferroptosis by Nrf2/HO-1/GPX4 and Akt/FHC/ACSL4 pathway to alleviate ovarian damage[J]. Life Sci, 2023,332:122109. doi: 10.1016/j.lfs.2023.122109.
|
[30] |
Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023, 19(7):1982-1996. doi: 10.1080/15548627.2023.2165323.
|
[31] |
Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1[J]. Redox Biol, 2023,62:102703. doi: 10.1016/j.redox.2023.102703.
|
[32] |
Lin PH, Su WP, Li CJ, et al. Investigating the Role of Ferroptosis-Related Genes in Ovarian Aging and the Potential for Nutritional Intervention[J]. Nutrients, 2023, 15(11):2461. doi: 10.3390/nu15112461.
|
[33] |
Zhou D, Lu P, Mo X, et al. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications[J]. Front Endocrinol(Lausanne), 2023,14:1248934. doi: 10.3389/fendo.2023.1248934.
|
[34] |
Chen Y, He W, Wei H, et al. Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury[J]. CNS Neurosci Ther, 2023, 29(6):1667-1677. doi: 10.1111/cns.14130.
|
[35] |
Nie X, Dong X, Hu Y, et al. Coenzyme Q10 Stimulate Reproductive Vatality[J]. Drug Des Devel Ther, 2023, 17:2623-2637. doi: 10.2147/DDDT.S386974.
|