[1] |
Xie X, Liu J, Gao J, et al. The crosstalk between cell death and pregnancy related diseases: A narrative review[J]. Biomed Pharmacother, 2024, 176:116815. doi: 10.1016/j.biopha.2024.116815.
|
[2] |
de Dios N, Riedel R, Schanton M, et al. Placental apoptosis increased by hypoxia inducible factor-1 stabilization is counteracted by leptin[J]. Biol Reprod, 2024, 111(3):708-722. doi: 10.1093/biolre/ioae095.
|
[3] |
Zhao X, Yang Y, Xie Q, et al. Identification of Biomarkers and Mechanisms Associated with Apoptosis in Recurrent Pregnancy Loss[J]. Biochem Genet, 2024 Oct 14. doi: 10.1007/s10528-024-10932-0.
|
[4] |
Vinik Y, Maimon A, Dubey V, et al. Programming a Ferroptosis-to-Apoptosis Transition Landscape Revealed Ferroptosis Biomarkers and Repressors for Cancer Therapy[J]. Adv Sci(Weinh), 2024, 11(17):e2307263. doi: 10.1002/advs.202307263.
|
[5] |
Yuan J, Ofengeim D. A guide to cell death pathways[J]. Nat Rev Mol Cell Biol, 2024, 25(5):379-395. doi: 10.1038/s41580-023-00689-6.
|
[6] |
Saddam M, Paul SK, Habib MA, et al. Emerging biomarkers and potential therapeutics of the BCL-2 protein family: the apoptotic and anti-apoptotic context[J]. Egypt J Med Hum Genet, 2024, 25:12. doi:10.1186/s43042-024-00485-7.
|
[7] |
Pandey SK, Shteinfer-Kuzmine A, Chalifa-Caspi V, et al. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression[J]. Front Oncol, 2022, 12:992260. doi: 10.3389/fonc.2022.992260.
|
[8] |
Flores-Romero H, Hohorst L, John M, et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis[J]. EMBO J, 2022, 41(2):e108690. doi: 10.15252/embj.2021108690.
|
[9] |
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis[J]. Nat Rev Mol Cell Biol, 2023, 24(10):732-748. doi: 10.1038/s41580-023-00629-4.
|
[10] |
Sahoo G, Samal D, Khandayataray P, et al. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis[J]. Mol Neurobiol, 2023, 60(10):5805-5837. doi: 10.1007/s12035-023-03433-5.
pmid: 37349620
|
[11] |
Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol, 2020, 17(7):395-417. doi: 10.1038/s41571-020-0341-y.
pmid: 32203277
|
[12] |
Seyrek K, Ivanisenko NV, König C, et al. Modulation of extrinsic apoptotic pathway by intracellular glycosylation[J]. Trends Cell Biol, 2024, 34(9):728-741. doi: 10.1016/j.tcb.2024.01.003.
|
[13] |
Qian J, Zhao L, Xu L, et al. Cell Death: Mechanisms and Potential Targets in Breast Cancer Therapy[J]. Int J Mol Sci, 2024, 25(17):9703. doi: 10.3390/ijms25179703.
|
[14] |
马丹丹, 郭明明, 宋凯, 等. 内质网应激——凋亡途径与创伤后应激障碍[J]. 成都中医药大学学报, 2024, 47(5):76-80. doi: 10.13593/j.cnki.51-1501/r.2024.05.014.
|
[15] |
Chen X, Shi C, He M, et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1):352. doi: 10.1038/s41392-023-01570-w.
|
[16] |
Chipurupalli S, Samavedam U, Robinson N. Crosstalk Between ER Stress, Autophagy and Inflammation[J]. Front Med(Lausanne), 2021, 8:758311. doi: 10.3389/fmed.2021.758311.
|
[17] |
Shi T, van Soest D, Polderman PE, et al. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways[J]. Free Radic Biol Med, 2021, 172:298-311. doi: 10.1016/j.freeradbiomed.2021.06.013.
|
[18] |
Fusée L, Salomao N, Ponnuswamy A, et al. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures[J]. Cell Death Differ, 2023, 30(4):1072-1081. doi: 10.1038/s41418-023-01127-y.
|
[19] |
秦朗, 高睿. 《自然流产诊治中国专家共识(2020年版)》评述[J]. 西部医学, 2021, 33(5):625-631. doi:10.3969/j.issn.1672-3511.2021.05.001.
|
[20] |
梁婷婷, 赵靖嵩, 马成龙, 等. 微小RNA-184促进滋养层细胞凋亡而引起复发性流产的研究[J]. 现代预防医学, 2021, 48(6):1123-1127.
|
[21] |
周立花, 胡英, 邹晖. 复发性流产患者绒毛组织中miR-27a表达对滋养细胞增殖和凋亡的影响及其作用机制[J]. 吉林大学学报(医学版), 2022, 48(4):1018-1027. doi: 10.13481/j.1671-587X.20220423.
|
[22] |
Wang J, Ding J, Zhang S, et al. Decreased USP2a Expression Inhibits Trophoblast Invasion and Associates With Recurrent Miscarriage[J]. Front Immunol, 2021, 12:717370. doi: 10.3389/fimmu.2021.717370.
|
[23] |
Kokori E, Aderinto N, Olatunji G, et al. Maternal and fetal neurocognitive outcomes in preeclampsia and eclampsia; a narrative review of current evidence[J]. Eur J Med Res, 2024, 29(1):470. doi: 10.1186/s40001-024-02070-5.
pmid: 39342384
|
[24] |
Wu D, Zhou B, Hong L, et al. Trophoblast cell-derived extracellular vesicles regulate the polarization of decidual macrophages by carrying miR-141-3p in the pathogenesis of preeclampsia[J]. Sci Rep, 2024, 14(1):24529. doi: 10.1038/s41598-024-76563-y.
pmid: 39424901
|
[25] |
Guzik TJ, Nosalski R, Maffia P, et al. Immune and inflammatory mechanisms in hypertension[J]. Nat Rev Cardiol, 2024, 21(6):396-416. doi: 10.1038/s41569-023-00964-1.
pmid: 38172242
|
[26] |
张雅, 刘晓红. GRHL2在子痫前期患者胎盘中的表达及对滋养层细胞增殖、侵袭的影响[J]. 中国妇幼健康研究, 2024, 35(9):7-13. doi: 10.3969/j.issn.1673-5293.2024.09.002.
|
[27] |
Huang SJ, Chen CP, Buchwalder L, et al. Regulation of CX3CL1 Expression in Human First-Trimester Decidual Cells: Implications for Preeclampsia[J]. Reprod Sci, 2019, 26(9):1256-1265. doi: 10.1177/1933719118815592.
pmid: 30606080
|
[28] |
Wu H, Guo H, Liu H, et al. Copper sulfate-induced endoplasmic reticulum stress promotes hepatic apoptosis by activating CHOP, JNK and caspase-12 signaling pathways[J]. Ecotoxicol Environ Saf, 2020, 191:110236. doi:10.1016/j.ecoenv.2020.110236.
|
[29] |
Verlohren S, Brennecke SP, Galindo A, et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia[J]. Pregnancy Hypertens, 2022, 27:42-50. doi: 10.1016/j.preghy.2021.12.003.
|
[30] |
Wang H, Li N, Chivese T, et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group′s Criteria[J]. Diabetes Res Clin Pract, 2022, 183:109050. doi: 10.1016/j.diabres.2021.109050.
|
[31] |
He M, Guo X, Jia J, et al. Regulatory mechanisms underlying endoplasmic reticulum stress involvement in the development of gestational diabetes mellitus entail the CHOP-PPARα-NF-κB pathway[J]. Placenta, 2023, 142:46-55. doi: 10.1016/j.placenta.2023.08.070.
pmid: 37639950
|
[32] |
Li X, Ji Q, Zhong C, et al. Ghrelin regulates the endoplasmic reticulum stress signalling pathway in gestational diabetes mellitus[J]. Biochem Biophys Res Commun, 2024, 709:149844. doi: 10.1016/j.bbrc.2024.149844.
|
[33] |
Liu ZN, Jiang Y, Liu XQ, et al. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications[J]. J Diabetes Res, 2021,, 2021:4632745. doi: 10.1155/2021/4632745.
|
[34] |
蒋昊天, 陈超. 不同胎龄早产儿的生存状况及其变化趋势[J]. 中华围产医学杂志, 2024, 27(10):865-870. doi: 10.3760/cma.j.cn113903-20240709-00508.
|
[35] |
Tong X, Li M, Liu N, et al. Hyperoxia induces endoplasmic reticulum stress-associated apoptosis via the IRE1 α pathway in rats with bronchopulmonary dysplasia[J]. Mol Med Rep, 2021, 23(1):33. doi: 10.3892/mmr.2020.11671.
|