Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (1): 29-33.doi: 10.12280/gjfckx.20210724
• Research on Gynecological Malignancies:Review • Previous Articles Next Articles
Received:
2021-08-03
Published:
2022-02-15
Online:
2022-03-02
Contact:
PING Yi
E-mail:pingyi7110@126.com
GUO Wen-di, PING Yi. Research Progress of Female Reproductive Tract and Gut Microbiome in Ovarian Cancer[J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 29-33.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Jacobson D, Moore K, Gunderson C, et al. Shifts in gut and vaginal microbiomes are associated with cancer recurrence time in women with ovarian cancer[J]. PeerJ, 2021, 9:e11574. doi: 10.7717/peerj.11574.
doi: 10.7717/peerj.11574 pmid: 34178459 |
[3] |
Idahl A, Le Cornet C, González Maldonado S, et al. Serologic markers of Chlamydia trachomatis and other sexually transmitted infections and subsequent ovarian cancer risk: Results from the EPIC cohort[J]. Int J Cancer, 2020, 147(8):2042-2052. doi: 10.1002/ijc.32999.
doi: 10.1002/ijc.32999 |
[4] |
Nené NR, Reisel D, Leimbach A, et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: a case-control study[J]. Lancet Oncol, 2019, 20(8):1171-1182. doi: 10.1016/S1470-2045(19)30340-7.
doi: 10.1016/S1470-2045(19)30340-7 |
[5] |
Cheng H, Wang Z, Cui L, et al. Opportunities and Challenges of the Human Microbiome in Ovarian Cancer[J]. Front Oncol, 2020, 10:163. doi: 10.3389/fonc.2020.00163.
doi: 10.3389/fonc.2020.00163 |
[6] |
Lin HW, Tu YY, Lin SY, et al. Risk of ovarian cancer in women with pelvic inflammatory disease: a population-based study[J]. Lancet Oncol, 2011, 12(9):900-904. doi: 10.1016/S1470-2045(11)70165-6.
doi: 10.1016/S1470-2045(11)70165-6 |
[7] |
Trabert B, Waterboer T, Idahl A, et al. Antibodies Against Chlamydia trachomatis and Ovarian Cancer Risk in Two Independent Populations[J]. J Natl Cancer Inst, 2019, 111(2):129-136. doi: 10.1093/jnci/djy084.
doi: 10.1093/jnci/djy084 |
[8] |
Wang Q, Zhao L, Han L, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ[J]. J Ovarian Res, 2020, 13(1):8. doi: 10.1186/s13048-019-0603-4.
doi: 10.1186/s13048-019-0603-4 pmid: 31954395 |
[9] |
Xu S, Liu Z, Lv M, et al. Intestinal dysbiosis promotes epithelial-mesenchymal transition by activating tumor-associated macrophages in ovarian cancer[J]. Pathog Dis, 2019, 77(2):ftz019. doi: 10.1093/femspd/ftz019.
doi: 10.1093/femspd/ftz019 |
[10] |
Miao R, Badger TC, Groesch K, et al. Assessment of peritoneal microbial features and tumor marker levels as potential diagnostic tools for ovarian cancer[J]. PLoS One, 2020, 15(1):e0227707. doi: 10.1371/journal.pone.0227707.
doi: 10.1371/journal.pone.0227707 |
[11] |
Park GB, Chung YH, Kim D. Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells[J]. Oncol Rep, 2017, 37(5):3137-3145. doi: 10.3892/or.2017.5533.
doi: 10.3892/or.2017.5533 pmid: 28350104 |
[12] |
Xie H, Hou Y, Cheng J, et al. Metabolic profiling and novel plasma biomarkers for predicting survival in epithelial ovarian cancer[J]. Oncotarget, 2017, 8(19):32134-32146. doi: 10.18632/oncotarget.16739.
doi: 10.18632/oncotarget.16739 |
[13] |
Sonner JK, Keil M, Falk-Paulsen M, et al. Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology[J]. Nat Commun, 2019, 10(1):4877. doi: 10.1038/s41467-019-12776-4.
doi: 10.1038/s41467-019-12776-4 pmid: 31653831 |
[14] |
Raza MH, Gul K, Arshad A, et al. Microbiota in cancer development and treatment[J]. J Cancer Res Clin Oncol, 2019, 145(1):49-63. doi: 10.1007/s00432-018-2816-0.
doi: 10.1007/s00432-018-2816-0 |
[15] |
Trabert B, Coburn SB, Falk RT, et al. Circulating estrogens and postmenopausal ovarian and endometrial cancer risk among current hormone users in the Women′s Health Initiative Observational Study[J]. Cancer Causes Control, 2019, 30(11):1201-1211. doi: 10.1007/s10552-019-01233-8.
doi: 10.1007/s10552-019-01233-8 |
[16] |
Fuhrman BJ, Feigelson HS, Flores R, et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women[J]. J Clin Endocrinol Metab, 2014, 99(12):4632-4640. doi: 10.1210/jc.2014-2222.
doi: 10.1210/jc.2014-2222 |
[17] |
Parida S, Sharma D. The Microbiome-Estrogen Connection and Breast Cancer Risk[J]. Cells, 2019, 8(12):1642. doi: 10.3390/cells8121642.
doi: 10.3390/cells8121642 |
[18] |
Smolková K, Mikó E, Kovács T, et al. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism[J]. Antioxid Redox Signal, 2020, 33(13):966-997. doi: 10.1089/ars.2020.8024.
doi: 10.1089/ars.2020.8024 |
[19] |
Rahbar Saadat Y, Pourseif MM, Zununi Vahed S, et al. Modulatory Role of Vaginal-Isolated Lactococcus lactis on the Expression of miR-21, miR-200b, and TLR-4 in CAOV-4 Cells and In Silico Revalidation[J]. Probiotics Antimicrob Proteins, 2020, 12(3):1083-1096. doi: 10.1007/s12602-019-09596-9.
doi: 10.1007/s12602-019-09596-9 pmid: 31797280 |
[20] |
Szajnik M, Szczepanski MJ, Czystowska M, et al. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer[J]. Oncogene, 2009, 28(49):4353-4363. doi: 10.1038/onc.2009.289.
doi: 10.1038/onc.2009.289 pmid: 19826413 |
[21] |
Browning L, Patel MR, Horvath EB, et al. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis[J]. Cancer Manag Res, 2018, 10:6685-6693. doi: 10.2147/CMAR.S179189.
doi: 10.2147/CMAR.S179189 pmid: 30584363 |
[22] |
Park GB, Kim D. TLR5/7-mediated PI3K activation triggers epithelial-mesenchymal transition of ovarian cancer cells through WAVE3-dependent mesothelin or OCT4/SOX2 expression[J]. Oncol Rep, 2017, 38(5):3167-3176. doi: 10.3892/or.2017.5941.
doi: 10.3892/or.2017.5941 pmid: 28901470 |
[23] |
Rutkowski MR, Stephen TL, Svoronos N, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation[J]. Cancer Cell, 2015, 27(1):27-40. doi: 10.1016/j.ccell.2014.11.009.
doi: 10.1016/j.ccell.2014.11.009 pmid: 25533336 |
[24] |
Moufarrij S, Dandapani M, Arthofer E, et al. Epigenetic therapy for ovarian cancer: promise and progress[J]. Clin Epigenetics, 2019, 11(1):7. doi: 10.1186/s13148-018-0602-0.
doi: 10.1186/s13148-018-0602-0 pmid: 30646939 |
[25] |
Allavena P, Chieppa M, Bianchi G, et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages[J]. Clin Dev Immunol, 2010, 2010:547179. doi: 10.1155/2010/547179.
doi: 10.1155/2010/547179 |
[26] |
Zandi Z, Kashani B, Poursani EM, et al. TLR4 blockade using TAK-242 suppresses ovarian and breast cancer cells invasion through the inhibition of extracellular matrix degradation and epithelial-mesenchymal transition[J]. Eur J Pharmacol, 2019, 853:256-263. doi: 10.1016/j.ejphar.2019.03.046.
doi: 10.1016/j.ejphar.2019.03.046 |
[27] |
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161):967-970. doi: 10.1126/science.1240527.
doi: 10.1126/science.1240527 |
[28] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97. doi: 10.1126/science.aan3706.
doi: 10.1126/science.aan3706 |
[29] |
Perales-Puchalt A, Perez-Sanz J, Payne KK, et al. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy[J]. J Leukoc Biol, 2018, 103(5):799-805. doi: 10.1002/JLB.5HI1117-446RR.
doi: 10.1002/JLB.5HI1117-446RR |
[30] |
Wang Y, Sun L, Chen S, et al. The administration of Escherichia coli Nissle 1917 ameliorates irinotecan-induced intestinal barrier dysfunction and gut microbial dysbiosis in mice[J]. Life Sci, 2019, 231:116529. doi: 10.1016/j.lfs.2019.06.004.
doi: 10.1016/j.lfs.2019.06.004 |
[31] |
Pflug N, Kluth S, Vehreschild JJ, et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota[J]. Oncoimmunology, 2016, 5(6):e1150399. doi: 10.1080/2162402X.2016.1150399.
doi: 10.1080/2162402X.2016.1150399 |
[32] |
Davar D, Dzutsev AK, Mcculloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients[J]. Science, 2021, 371(6529):595-602. doi: 10.1126/science.abf3363.
doi: 10.1126/science.abf3363 |
[33] |
Zhou B, Xia M, Wang B, et al. Clarithromycin synergizes with cisplatin to inhibit ovarian cancer growth in vitro and in vivo[J]. J Ovarian Res, 2019, 12(1):107. doi: 10.1186/s13048-019-0570-9.
doi: 10.1186/s13048-019-0570-9 pmid: 31703731 |
[34] |
Michalak M, Lach MS, Antoszczak M, et al. Overcoming Resistance to Platinum-Based Drugs in Ovarian Cancer by Salinomycin and Its Derivatives-An In Vitro Study[J]. Molecules, 2020, 25(3):537. doi: 10.3390/molecules25030537.
doi: 10.3390/molecules25030537 |
[35] |
Chambers LM, Kuznicki M, Yao M, et al. Impact of antibiotic treatment during platinum chemotherapy on survival and recurrence in women with advanced epithelial ovarian cancer[J]. Gynecol Oncol, 2020, 159(3):699-705. doi: 10.1016/j.ygyno.2020.09.010.
doi: 10.1016/j.ygyno.2020.09.010 pmid: 32950250 |
[36] |
Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med, 2004, 10(9):942-949. doi: 10.1038/nm1093.
doi: 10.1038/nm1093 pmid: 15322536 |
[37] |
Schepisi G, Casadei C, Toma I, et al. Immunotherapy and Its Development for Gynecological (Ovarian, Endometrial and Cervical) Tumors: From Immune Checkpoint Inhibitors to Chimeric Antigen Receptor (CAR)-T Cell Therapy[J]. Cancers(Basel), 2021, 13(4):840. doi: 10.3390/cancers13040840.
doi: 10.3390/cancers13040840 |
[38] |
Zhang X, He T, Li Y, et al. Dendritic Cell Vaccines in Ovarian Cancer[J]. Front Immunol, 2020, 11:613773. doi: 10.3389/fimmu.2020.613773.
doi: 10.3389/fimmu.2020.613773 pmid: 33584699 |
[39] |
Wallace TC, Bultman S, D′Adamo C, et al. Personalized Nutrition in Disrupting Cancer - Proceedings From the 2017 American College of Nutrition Annual Meeting[J]. J Am Coll Nutr, 2019, 38(1):1-14. doi: 10.1080/07315724.2018.1500499.
doi: 10.1080/07315724.2018.1500499 pmid: 30511901 |
[40] |
Playdon MC, Nagle CM, Ibiebele TI, et al. Pre-diagnosis diet and survival after a diagnosis of ovarian cancer[J]. Br J Cancer, 2017, 116(12):1627-1637. doi: 10.1038/bjc.2017.120.
doi: 10.1038/bjc.2017.120 |
[1] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[2] | YIN Ting, CONG Hui-fang. Progress in Immunological of Endometriosis and Pain Sensitization [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 206-210. |
[3] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[4] | HU Ming-zhu, LIU Li-wen, HUANG Lei. The Relationship between Vaginal Microecology and Cervical Cancer in HIV-Infected Women [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 13-18. |
[5] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[6] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[7] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[8] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[9] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[10] | ZHONG Xiao-ying, LIU Hai-yuan. Composition and Research Progress of the Endometrial Microbiota [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 481-485. |
[11] | HUANG Mo-ya, ZHAO Ya-qian, HE Yin-fang. Progress in the Diagnosis and Treatment of Pregnancy Complicated by Krukenberg Tumor [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 531-535. |
[12] | ZHANG Jian-nan, GUO Xin, GUO Nan, NING Wen-ting, YU Hong-xin, SHANG Hai-xia. Application of Microfluidic Technology in Ovarian Cancer Disease Modeling, Drug Evaluation, and Precision Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 560-565. |
[13] | JIN Xiao-lei, XU Fei-xue. Five Cases of Diagnosis and Treatment of Ovarian Brenner Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 578-583. |
[14] | CHEN Zhi-wei, LIU Lin. A Case of Ovarian Malignant Tumor with SMARCA4 Gene Deletion [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 584-587. |
[15] | DING Yi-ling, LU Di, SONG Dian-rong. Research Progress on the Mechanism of Tumor Resistance in Polyploid Giant Cancer Cells [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 361-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||