Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (5): 492-496.doi: 10.12280/gjfckx.20220292
• Gynecological Disease & Related Research:Review • Previous Articles Next Articles
CHEN Ying, HUANG Jin-zhi△(), WU Ke-feng, LI Qian
Received:
2022-04-19
Published:
2022-10-15
Online:
2022-10-24
Contact:
HUANG Jin-zhi
E-mail:huangjzgd@163.com
CHEN Ying, HUANG Jin-zhi, WU Ke-feng, LI Qian. Application Progress of Tissue Clearing Three-Dimensional Imaging Technology in Ovarian Tissue[J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 492-496.
Add to citation manager EndNote|Ris|BibTeX
分类 | 作者 | 发表时间 | 透明化方法 | 卵巢来源 | 研究内容 | 显微镜类型 |
---|---|---|---|---|---|---|
有机溶剂型 | Zucker等[ | 2006年 | BABB | 小鼠卵巢 | 可视化卵巢形态和细胞凋亡 | 共聚焦显微镜 |
Svingen等[13] | 2012年 | BABB | 小鼠卵巢 | 卵巢中淋巴管生成 | 共聚焦显微镜、荧光显微镜 | |
Faire等[14] | 2015年 | BABB | 小鼠卵巢 | 辨别卵巢卵泡的生长状态,提供更高通量的 卵泡计数方法 | 共聚焦显微镜 | |
Soygur等[15] | 2021年 | BABB | 小鼠卵巢 | 小鼠胎儿完整卵巢中的减数分裂起始 | 共聚焦显微镜 | |
Tanaka等[16] | 2017年 | iDISCO | 人类卵巢癌 | 血管半径和CD34密度方差以及药物反应性 之间的相关性 | 光片显微镜、荧光显微镜 | |
Masselink等[17] | 2019年 | 2Eci | 果蝇卵巢 | 标记卵泡成熟的整个过程,从生发干细胞到减数 分裂和卵子形成 | 光片显微镜、共聚焦显微镜 | |
亲水溶剂型 | Kagami等[18] | 2018年 | CUBIC | 小鼠卵巢 | 单个卵母细胞的三维定位,进一步明确卵泡的 三维结构 | 共聚焦显微镜、光片显微镜 |
Tong等[19] | 2020年 | CUBIC | 小鼠卵巢 | 确定神经支配在卵泡生成和血管形成中的作用 | 光片显微镜 | |
Soygur等[15] | 2021年 | Scale CUBIC | 小鼠卵巢 | 完整小鼠胎儿卵巢中的减数分裂起始 | 共聚焦显微镜 | |
Boateng等[20] | 2021年 | ScaleS和CUBIC | 小鼠卵巢 | 全卵巢的卵母细胞数量 | 多光子显微镜 | |
Malki等[21] | 2015年 | ScaleA2 | 小鼠卵巢 | 对完整卵巢中的生殖细胞进行自动检测和计数 | 共聚焦显微镜 | |
Rinaldi等[22] | 2018年 | ScaleS | 小鼠卵巢 | 卵母细胞定量 | 共聚焦显微镜 | |
主动型 | Feng等[23] | 2017年 | CLARITY | 小鼠卵巢 | 卵泡动力学、卵泡发生与卵巢脉管系统之间的关系 | 共聚焦显微镜 |
Hu等[24] | 2017年 | CLARITY | 小鼠卵巢 | 卵巢脉管的三维连接和结构,以及卵泡和脉管之间的三维结构关系 | 共聚焦显微镜 | |
Ma等[25] | 2018年 | CLARITY | 大鼠卵巢 | 分析不同类型卵泡的数量及其与局部脉管系统的关系 | 共聚焦显微镜 | |
组合型 | Oren等[26] | 2018年 | WOBLI(CLARITY 和ScaleA2) | 小鼠卵巢 | 分析并生成淋巴和脉管系统的结构信息 | 光片显微镜 |
McKey等[27] | 2020年 | iDISCO和CUBIC | 小鼠卵巢 | 对发育的各个阶段的卵泡进行了定性评估,并研究包括脉管和神经网络在内的卵巢外成分的完整性 | 光片显微镜、共聚焦显微镜 | |
Lesage等[28] | 2020年 | CUBIC-ECi | 青鳉和鳟鱼的卵巢 | 鱼类卵巢中卵泡的定量 | 共聚焦显微镜 |
分类 | 作者 | 发表时间 | 透明化方法 | 卵巢来源 | 研究内容 | 显微镜类型 |
---|---|---|---|---|---|---|
有机溶剂型 | Zucker等[ | 2006年 | BABB | 小鼠卵巢 | 可视化卵巢形态和细胞凋亡 | 共聚焦显微镜 |
Svingen等[13] | 2012年 | BABB | 小鼠卵巢 | 卵巢中淋巴管生成 | 共聚焦显微镜、荧光显微镜 | |
Faire等[14] | 2015年 | BABB | 小鼠卵巢 | 辨别卵巢卵泡的生长状态,提供更高通量的 卵泡计数方法 | 共聚焦显微镜 | |
Soygur等[15] | 2021年 | BABB | 小鼠卵巢 | 小鼠胎儿完整卵巢中的减数分裂起始 | 共聚焦显微镜 | |
Tanaka等[16] | 2017年 | iDISCO | 人类卵巢癌 | 血管半径和CD34密度方差以及药物反应性 之间的相关性 | 光片显微镜、荧光显微镜 | |
Masselink等[17] | 2019年 | 2Eci | 果蝇卵巢 | 标记卵泡成熟的整个过程,从生发干细胞到减数 分裂和卵子形成 | 光片显微镜、共聚焦显微镜 | |
亲水溶剂型 | Kagami等[18] | 2018年 | CUBIC | 小鼠卵巢 | 单个卵母细胞的三维定位,进一步明确卵泡的 三维结构 | 共聚焦显微镜、光片显微镜 |
Tong等[19] | 2020年 | CUBIC | 小鼠卵巢 | 确定神经支配在卵泡生成和血管形成中的作用 | 光片显微镜 | |
Soygur等[15] | 2021年 | Scale CUBIC | 小鼠卵巢 | 完整小鼠胎儿卵巢中的减数分裂起始 | 共聚焦显微镜 | |
Boateng等[20] | 2021年 | ScaleS和CUBIC | 小鼠卵巢 | 全卵巢的卵母细胞数量 | 多光子显微镜 | |
Malki等[21] | 2015年 | ScaleA2 | 小鼠卵巢 | 对完整卵巢中的生殖细胞进行自动检测和计数 | 共聚焦显微镜 | |
Rinaldi等[22] | 2018年 | ScaleS | 小鼠卵巢 | 卵母细胞定量 | 共聚焦显微镜 | |
主动型 | Feng等[23] | 2017年 | CLARITY | 小鼠卵巢 | 卵泡动力学、卵泡发生与卵巢脉管系统之间的关系 | 共聚焦显微镜 |
Hu等[24] | 2017年 | CLARITY | 小鼠卵巢 | 卵巢脉管的三维连接和结构,以及卵泡和脉管之间的三维结构关系 | 共聚焦显微镜 | |
Ma等[25] | 2018年 | CLARITY | 大鼠卵巢 | 分析不同类型卵泡的数量及其与局部脉管系统的关系 | 共聚焦显微镜 | |
组合型 | Oren等[26] | 2018年 | WOBLI(CLARITY 和ScaleA2) | 小鼠卵巢 | 分析并生成淋巴和脉管系统的结构信息 | 光片显微镜 |
McKey等[27] | 2020年 | iDISCO和CUBIC | 小鼠卵巢 | 对发育的各个阶段的卵泡进行了定性评估,并研究包括脉管和神经网络在内的卵巢外成分的完整性 | 光片显微镜、共聚焦显微镜 | |
Lesage等[28] | 2020年 | CUBIC-ECi | 青鳉和鳟鱼的卵巢 | 鱼类卵巢中卵泡的定量 | 共聚焦显微镜 |
[1] |
Tian T, Yang Z, Li X. Tissue clearing technique: Recent progress and biomedical applications[J]. J Anat, 2021, 238(2):489-507. doi: 10.1111/joa.13309.
doi: 10.1111/joa.13309 |
[2] |
Gómez-Gaviro MV, Sanderson D, Ripoll J, et al. Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease[J]. iScience, 2020, 23(8):101432. doi: 10.1016/j.isci.2020.101432.
doi: 10.1016/j.isci.2020.101432 |
[3] |
Zhao S, Todorov MI, Cai R, et al. Cellular and Molecular Probing of Intact Human Organs[J]. Cell, 2020, 180(4):796-812.e19. doi: 10.1016/j.cell.2020.01.030.
doi: S0092-8674(20)30111-2 pmid: 32059778 |
[4] |
Cipollari S, Jamshidi N, Du L, et al. Tissue clearing techniques for three-dimensional optical imaging of intact human prostate and correlations with multi-parametric MRI[J]. Prostate, 2021, 81(9):521-529. doi: 10.1002/pros.24129.
doi: 10.1002/pros.24129 pmid: 33876838 |
[5] |
Almagro J, Messal HA, Zaw Thin M, et al. Tissue clearing to examine tumour complexity in three dimensions[J]. Nat Rev Cancer, 2021, 21(11):718-730. doi: 10.1038/s41568-021-00382-w.
doi: 10.1038/s41568-021-00382-w |
[6] |
Matsumoto K, Mitani TT, Horiguchi SA, et al. Advanced CUBIC tissue clearing for whole-organ cell profiling[J]. Nat Protoc, 2019, 14(12):3506-3537. doi: 10.1038/s41596-019-0240-9.
doi: 10.1038/s41596-019-0240-9 pmid: 31748753 |
[7] |
Hillman E, Voleti V, Li W, et al. Light-Sheet Microscopy in Neuroscience[J]. Annu Rev Neurosci, 2019, 42:295-313. doi: 10.1146/annurev-neuro-070918-050357.
doi: 10.1146/annurev-neuro-070918-050357 pmid: 31283896 |
[8] |
Jafree DJ, Long DA, Scambler PJ, et al. Tissue Clearing and Deep Imaging of the Kidney Using Confocal and Two-Photon Microscopy[J]. Methods Mol Biol, 2020, 2067:103-126. doi: 10.1007/978-1-4939-9841-8_8.
doi: 10.1007/978-1-4939-9841-8_8 pmid: 31701448 |
[9] |
Feuchtinger A, Walch A, Dobosz M. Deep tissue imaging: a review from a preclinical cancer research perspective[J]. Histochem Cell Biol, 2016, 146(6):781-806. doi: 10.1007/s00418-016-1495-7.
doi: 10.1007/s00418-016-1495-7 pmid: 27704211 |
[10] |
Sabdyusheva Litschauer I, Becker K, Saghafi S, et al. 3D histopathology of human tumours by fast clearing and ultramicroscopy[J]. Sci Rep, 10(1):17619. doi: 10.1038/s41598-020-71737-w.
doi: 10.1038/s41598-020-71737-w |
[11] |
Hong SM, Jung D, Kiemen A, et al. Three-dimensional visualization of cleared human pancreas cancer reveals that sustained epithelial-to-mesenchymal transition is not required for venous invasion[J]. Mod Pathol, 2020, 33(4):639-647. doi: 10.1038/s41379-019-0409-3.
doi: 10.1038/s41379-019-0409-3 |
[12] |
Zucker RM, Jeffay SC. Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy[J]. Cytometry A, 2006, 69(8):930-939. doi: 10.1002/cyto.a.20315.
doi: 10.1002/cyto.a.20315 |
[13] |
Svingen T, François M, Wilhelm D, et al. Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary[J]. PLoS One, 2012, 7(12):e52620. doi: 10.1371/journal.pone.0052620.
doi: 10.1371/journal.pone.0052620 |
[14] |
Faire M, Skillern A, Arora R, et al. Follicle dynamics and global organization in the intact mouse ovary[J]. Dev Biol, 2015, 403(1):69-79. doi: 10.1016/j.ydbio.2015.04.006.
doi: 10.1016/j.ydbio.2015.04.006 pmid: 25889274 |
[15] |
Soygur B, Jaszczak RG, Fries A, et al. Intercellular bridges coordinate the transition from pluripotency to meiosis in mouse fetal oocytes[J]. Sci Adv, 2021, 7(15):eabc6747. doi: 10.1126/sciadv.abc6747.
doi: 10.1126/sciadv.abc6747 |
[16] |
Tanaka N, Kanatani S, Tomer R, et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity[J]. Nat Biomed Eng, 2017, 1(10):796-806. doi: 10.1038/s41551-017-0139-0.
doi: 10.1038/s41551-017-0139-0 pmid: 31015588 |
[17] |
Masselink W, Reumann D, Murawala P, et al. Broad applicability of a streamlined ethyl cinnamate-based clearing procedure[J]. Development, 2019, 146(3):dev166884. doi: 10.1242/dev.166884.
doi: 10.1242/dev.166884 |
[18] |
Kagami K, Shinmyo Y, Ono M, et al. Three-dimensional evaluation of murine ovarian follicles using a modified CUBIC tissue clearing method[J]. Reprod Biol Endocrinol, 2018, 16(1):72. doi: 10.1186/s12958-018-0381-7.
doi: 10.1186/s12958-018-0381-7 |
[19] |
Tong X, Liu Y, Xu X, et al. Ovarian Innervation Coupling With Vascularity: The Role of Electro-Acupuncture in Follicular Maturation in a Rat Model of Polycystic Ovary Syndrome[J]. Front Physiol, 2020, 11:474. doi: 10.3389/fphys.2020.00474.
doi: 10.3389/fphys.2020.00474 pmid: 32547407 |
[20] |
Boateng R, Boechat N, Henrich PP, et al. Whole Ovary Immunofluorescence, Clearing, and Multiphoton Microscopy for Quantitative 3D Analysis of the Developing Ovarian Reserve in Mouse[J]. J Vis Exp, 2021, 175:62972. doi: 10.3791/62972.
doi: 10.3791/62972 |
[21] |
Malki S, Tharp ME, Bortvin A. A Whole-Mount Approach for Accurate Quantitative and Spatial Assessment of Fetal Oocyte Dynamics in Mice[J]. Biol Reprod, 2015, 93(5):113. doi: 10.1095/biolreprod.115.132118.
doi: 10.1095/biolreprod.115.132118 pmid: 26423126 |
[22] |
Rinaldi VD, Bloom JC, Schimenti JC. Whole Mount Immunofluorescence and Follicle Quantification of Cultured Mouse Ovaries[J]. J Vis Exp, 2018, 135:57593. doi: 10.3791/57593.
doi: 10.3791/57593 |
[23] |
Feng Y, Cui P, Lu X, et al. CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions[J]. Sci Rep, 2017, 7:44810. doi: 10.1038/srep44810.
doi: 10.1038/srep44810 pmid: 28333125 |
[24] |
Hu W, Tamadon A, Hsueh A, et al. Three-dimensional Reconstruction of the Vascular Architecture of the Passive CLARITY-cleared Mouse Ovary[J]. J Vis Exp, 2017, 130:56141. doi: 10.3791/56141.
doi: 10.3791/56141 |
[25] |
Ma T, Cui P, Tong X, et al. Endogenous Ovarian Angiogenesis in Polycystic Ovary Syndrome-Like Rats Induced by Low-Frequency Electro-Acupuncture: The CLARITY Three-Dimensional Approach[J]. Int J Mol Sci, 2018, 19(11):3500. doi: 10.3390/ijms19113500.
doi: 10.3390/ijms19113500 |
[26] |
Oren R, Fellus-Alyagor L, Addadi Y, et al. Whole Organ Blood and Lymphatic Vessels Imaging (WOBLI)[J]. Sci Rep, 2018, 8(1):1412. doi: 10.1038/s41598-018-19663-w.
doi: 10.1038/s41598-018-19663-w pmid: 29362484 |
[27] |
McKey J, Cameron LA, Lewis D, et al. Combined iDISCO and CUBIC tissue clearing and lightsheet microscopy for in toto analysis of the adult mouse ovary?[J]. Biol Reprod, 2020, 102(5):1080-1089. doi: 10.1093/biolre/ioaa012.
doi: 10.1093/biolre/ioaa012 |
[28] |
Lesage M, Thomas M, Bugeon J, et al. C-ECi: a CUBIC-ECi combined clearing method for three-dimensional follicular content analysis in the fish ovary?[J]. Biol Reprod, 2020, 103(5):1099-1109. doi: 10.1093/biolre/ioaa142.
doi: 10.1093/biolre/ioaa142 pmid: 32776144 |
[29] |
Fiorentino G, Parrilli A, Garagna S, et al. Three-Dimensional Micro-Computed Tomography of the Adult Mouse Ovary[J]. Front Cell Dev Biol, 2020, 8:566152. doi: 10.3389/fcell.2020.566152.
doi: 10.3389/fcell.2020.566152 |
[1] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[2] | YAN Hui-bo, ZHANG Lin. Analysis of the Disease Burden and Projections of Polycystic Ovary Syndrome in China and Globally from 1990 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 228-233. |
[3] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[4] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[5] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[6] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[7] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[8] | QI Dan-dan, ZHU Hai-ying, CAO Hai-ru, ZHANG Yue-min. Mechanisms of Mitochondrial Dysfunction Regulating Ovarian Aging [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 61-65. |
[9] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[10] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[11] | GUO Xi, LIU Si-min, WEI Jia, YANG Yong-xiu. Malignant Transformation of Ovarian and Tube Endometriosis into Clear Cell Carcinoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 680-683. |
[12] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[13] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
[14] | LI Chen-xi, FAN Meng-xiao, WU Lin-ling, DOU Zhen, JIA Jia, SUN Ya-xuan. Advances in Research on Neuroendocrine Disorders Induced by Hyperandrogenism in Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 698-702. |
[15] | HUANG Mo-ya, ZHAO Ya-qian, HE Yin-fang. Progress in the Diagnosis and Treatment of Pregnancy Complicated by Krukenberg Tumor [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 531-535. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||