Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (3): 327-331.doi: 10.12280/gjfckx.20221032
• Obstetric Physiology & Obstetric Disease: Review • Previous Articles Next Articles
LI Shu-ming, GUAN Hong-qiong()
Received:
2022-12-05
Published:
2023-06-15
Online:
2023-06-27
Contact:
GUAN Hong-qiong, E-mail: LI Shu-ming, GUAN Hong-qiong. Research Progress of Inflammasome NLRP3 in Pre-Eclampsia[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 327-331.
Add to citation manager EndNote|Ris|BibTeX
激活物 | 受体 | 效应 |
---|---|---|
内质网应激 | TXNIP | 激活炎症小体NLRP3,引起PE样症状[ |
S100A9蛋白 | NLRP3 | 激活炎症小体NLRP3和IL-1β,中性粒细胞积聚和可溶性内切酶含量增高[ |
胆固醇晶体 | - | 激活炎症小体NLRP3、IL-1β表达增加、蜕膜产生炎症[ |
LPS | 激活氧化应激 | 促进NLRP3、caspase-1转换酶和IL-1β表达[ |
尿酸钠 | - | 炎症小体NLRP3、NF-κB、IL-1β、IL-18和TNF-α含量增加,产生过度炎症反应[ |
细胞外囊泡、血小板 | ATP、嘌呤能信号 | 滋养层细胞中NLRP3激活,触发PE样症状[ |
激活物 | 受体 | 效应 |
---|---|---|
内质网应激 | TXNIP | 激活炎症小体NLRP3,引起PE样症状[ |
S100A9蛋白 | NLRP3 | 激活炎症小体NLRP3和IL-1β,中性粒细胞积聚和可溶性内切酶含量增高[ |
胆固醇晶体 | - | 激活炎症小体NLRP3、IL-1β表达增加、蜕膜产生炎症[ |
LPS | 激活氧化应激 | 促进NLRP3、caspase-1转换酶和IL-1β表达[ |
尿酸钠 | - | 炎症小体NLRP3、NF-κB、IL-1β、IL-18和TNF-α含量增加,产生过度炎症反应[ |
细胞外囊泡、血小板 | ATP、嘌呤能信号 | 滋养层细胞中NLRP3激活,触发PE样症状[ |
抑制物 | 中间物质 | 效应 |
---|---|---|
SIRT1 | ROS | 抑制滋养层细胞中炎症小体NLRP3的活化及IL-1β的表达[ |
高浓度miR-520c-3p | NLRP3 | 抑制炎症小体NLRP3的激活,降低IL-18、IL-1β和TNF-α的表达水平[ |
二甲双胍 | TLR4/NF-κB/PFKFB3信号通路 | 抑制氧化应激和炎症小体NLRP3诱导的细胞焦亡[ |
NLRP3特异性抑制剂MCC950 | NLRP3 | 抑制炎症小体NLRP3、IL-1β及sEng的表达[ |
水飞蓟宾 | NF-κB信号通路 | 炎症小体NLRP3、IL-1β、IL-18和TNF-α含量降低,IL-10含量增加[ |
TBK1 | mTORC1 | 抑制LPS诱导的炎症小体NLRP3激活、胎盘炎症和IL-1的表达[ |
高浓度miR-135 | PCSK6 | NLRP3、IL-1β和TNF-α表达水平降低,减弱细胞凋亡和炎症,增强细胞的集落形成能力、生存能力、侵袭和迁移能力[ |
维生素D | - | 抑制尿酸钠诱导的炎症小体NLRP3、caspase-1转换酶、IL-1β和IL-18的mRNA和蛋白表达[ |
抑制物 | 中间物质 | 效应 |
---|---|---|
SIRT1 | ROS | 抑制滋养层细胞中炎症小体NLRP3的活化及IL-1β的表达[ |
高浓度miR-520c-3p | NLRP3 | 抑制炎症小体NLRP3的激活,降低IL-18、IL-1β和TNF-α的表达水平[ |
二甲双胍 | TLR4/NF-κB/PFKFB3信号通路 | 抑制氧化应激和炎症小体NLRP3诱导的细胞焦亡[ |
NLRP3特异性抑制剂MCC950 | NLRP3 | 抑制炎症小体NLRP3、IL-1β及sEng的表达[ |
水飞蓟宾 | NF-κB信号通路 | 炎症小体NLRP3、IL-1β、IL-18和TNF-α含量降低,IL-10含量增加[ |
TBK1 | mTORC1 | 抑制LPS诱导的炎症小体NLRP3激活、胎盘炎症和IL-1的表达[ |
高浓度miR-135 | PCSK6 | NLRP3、IL-1β和TNF-α表达水平降低,减弱细胞凋亡和炎症,增强细胞的集落形成能力、生存能力、侵袭和迁移能力[ |
维生素D | - | 抑制尿酸钠诱导的炎症小体NLRP3、caspase-1转换酶、IL-1β和IL-18的mRNA和蛋白表达[ |
[1] |
Chen A, Zhao H, Wang J, et al. Haplotype Analysis of Candidate Genes Involved in Inflammation and Oxidative Stress and the Susceptibility to Preeclampsia[J]. J Immunol Res, 2020, 2020:4683798. doi: 10.1155/2020/4683798.
doi: 10.1155/2020/4683798 |
[2] |
Park S, Shin J, Bae J, et al. SIRT1 Alleviates LPS-Induced IL-1β Production by Suppressing NLRP3 Inflammasome Activation and ROS Production in Trophoblasts[J]. Cells, 2020, 9(3):728. doi: 10.3390/cells9030728.
doi: 10.3390/cells9030728 |
[3] |
Chappell LC, Enye S, Seed P, et al. Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study[J]. Hypertension, 2008, 51(4):1002-1009. doi: 10.1161/HYPERTENSIONAHA.107.107565.
doi: 10.1161/HYPERTENSIONAHA.107.107565 pmid: 18259010 |
[4] |
Liu Z, Zhao X, Shan H, et al. microRNA-520c-3p suppresses NLRP3 inflammasome activation and inflammatory cascade in preeclampsia by downregulating NLRP3[J]. Inflamm Res, 2019, 68(8):643-654. doi: 10.1007/s00011-019-01246-8.
doi: 10.1007/s00011-019-01246-8 pmid: 31143973 |
[5] |
Harmon AC, Cornelius DC, Amaral LM, et al. The role of inflammation in the pathology of preeclampsia[J]. Clin Sci(Lond), 2016, 130(6):409-419. doi: 10.1042/CS20150702.
doi: 10.1042/CS20150702 |
[6] |
Valencia-Ortega J, Zárate A, Saucedo R, et al. Placental Proinflammatory State and Maternal Endothelial Dysfunction in Preeclampsia[J]. Gynecol Obstet Invest, 2019, 84(1):12-19. doi: 10.1159/000491087.
doi: 10.1159/000491087 |
[7] |
Quan XZ, Ye JH, Yang XZ, et al. HOXA9-induced chemerin signals through CMKLR1/AMPK/TXNIP/NLRP3 pathway to induce pyroptosis of trophoblasts and aggravate preeclampsia[J]. Exp Cell Res, 2021, 408(2):112802. doi: 10.1016/j.yexcr.2021.112802.
doi: 10.1016/j.yexcr.2021.112802 |
[8] |
Ozeki A, Oogaki Y, Henmi Y, et al. Elevated S100A9 in preeclampsia induces soluble endoglin and IL-1β secretion and hypertension via the NLRP3 inflammasome[J]. J Hypertens, 2022, 40(1):84-93. doi: 10.1097/HJH.0000000000002981.
doi: 10.1097/HJH.0000000000002981 |
[9] |
C Weel I, Romão-Veiga M, Matias ML, et al. Increased expression of NLRP3 inflammasome in placentas from pregnant women with severe preeclampsia[J]. J Reprod Immunol, 2017, 123:40-47. doi: 10.1016/j.jri.2017.09.002.
doi: S0165-0378(17)30011-6 pmid: 28915449 |
[10] |
Shirasuna K, Karasawa T, Usui F, et al. NLRP3 Deficiency Improves Angiotensin Ⅱ-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy[J]. Endocrinology, 2015, 156(11):4281-4292. doi: 10.1210/en.2015-1408.
doi: 10.1210/en.2015-1408 pmid: 26360504 |
[11] |
Yang Y, Li J, Han TL, et al. Endoplasmic reticulum stress may activate NLRP3 inflammasomes via TXNIP in preeclampsia[J]. Cell Tissue Res, 2020, 379(3):589-599. doi: 10.1007/s00441-019-03104-9.
doi: 10.1007/s00441-019-03104-9 pmid: 31637543 |
[12] |
Tersigni C, Vatish M, D′Ippolito S, et al. Abnormal uterine inflammation in obstetric syndromes: molecular insights into the role of chemokine decoy receptor D6 and inflammasome NLRP3[J]. Mol Hum Reprod, 2020, 26(2):111-121. doi: 10.1093/molehr/gaz067.
doi: 10.1093/molehr/gaz067 pmid: 32030415 |
[13] |
Matias ML, Romao-Veiga M, Ribeiro VR, et al. Progesterone and vitamin D downregulate the activation of the NLRP1/NLRP3 inflammasomes and TLR4-MyD88-NF-κB pathway in monocytes from pregnant women with preeclampsia[J]. J Reprod Immunol, 2021, 144:103286. doi: 10.1016/j.jri.2021.103286.
doi: 10.1016/j.jri.2021.103286 |
[14] |
Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia[J]. Front Endocrinol(Lausanne), 2020, 11:80. doi: 10.3389/fendo.2020.00080.
doi: 10.3389/fendo.2020.00080 |
[15] |
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4):783-801. doi: 10.1016/j.cell.2006.02.015.
doi: 10.1016/j.cell.2006.02.015 pmid: 16497588 |
[16] |
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics[J]. Nat Med, 2015, 21(7):677-687. doi: 10.1038/nm.3893.
doi: 10.1038/nm.3893 pmid: 26121197 |
[17] |
Zhang Y, Liu W, Zhong Y, et al. Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF-κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia[J]. Oxid Med Cell Longev, 2021, 2021:1806344. doi: 10.1155/2021/1806344.
doi: 10.1155/2021/1806344 |
[18] |
Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage[J]. Nat Rev Immunol, 2010, 10(12):826-837. doi: 10.1038/nri2873.
doi: 10.1038/nri2873 pmid: 21088683 |
[19] |
Laresgoiti-Servitje E. A leading role for the immune system in the pathophysiology of preeclampsia[J]. J Leukoc Biol, 2013, 94(2):247-257. doi: 10.1189/jlb.1112603.
doi: 10.1189/jlb.1112603 |
[20] |
Luppi P, Deloia JA. Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines[J]. Clin Immunol, 2006, 118(2/3):268-275. doi: 10.1016/j.clim.2005.11.001.
doi: 10.1016/j.clim.2005.11.001 |
[21] |
Matias ML, Gomes VJ, Romao-Veiga M, et al. Silibinin Downregulates the NF-κB Pathway and NLRP1/NLRP3 Inflammasomes in Monocytes from Pregnant Women with Preeclampsia[J]. Molecules, 2019, 24(8):1548. doi: 10.3390/molecules24081548.
doi: 10.3390/molecules24081548 |
[22] |
Silva GB, Gierman LM, Rakner JJ, et al. Cholesterol Crystals and NLRP3 Mediated Inflammation in the Uterine Wall Decidua in Normal and Preeclamptic Pregnancies[J]. Front Immunol, 2020, 11:564712. doi: 10.3389/fimmu.2020.564712.
doi: 10.3389/fimmu.2020.564712 |
[23] |
Zeng H, Han X, Zhu Z, et al. Increased uterine NLRP3 inflammasome and leucocyte infiltration in a rat model of preeclampsia[J]. Am J Reprod Immunol, 2021, 86(6):e13493. doi: 10.1111/aji.13493.
doi: 10.1111/aji.13493 |
[24] |
Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins[J]. Curr Mol Med, 2013, 13(1):24-57. doi: 10.2174/15665240130104.
doi: 10.2174/15665240130104 pmid: 22834835 |
[25] |
Kohli S, Ranjan S, Hoffmann J, et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts[J]. Blood, 2016, 128(17):2153-2164. doi: 10.1182/blood-2016-03-705434.
doi: 10.1182/blood-2016-03-705434 pmid: 27589872 |
[26] |
Sarhan M, Land WG, Tonnus W, et al. Origin and Consequences of Necroinflammation[J]. Physiol Rev, 2018, 98(2):727-780. doi: 10.1152/physrev.00041.2016.
doi: 10.1152/physrev.00041.2016 pmid: 29465288 |
[27] |
Cheng SB, Nakashima A, Huber WJ, et al. Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors[J]. Cell Death Dis, 2019, 10(12):927. doi: 10.1038/s41419-019-2162-4.
doi: 10.1038/s41419-019-2162-4 |
[28] |
Simmons GE Jr, Pruitt WM, Pruitt K. Diverse roles of SIRT1 in cancer biology and lipid metabolism[J]. Int J Mol Sci, 2015, 16(1):950-965. doi: 10.3390/ijms16010950.
doi: 10.3390/ijms16010950 pmid: 25569080 |
[29] |
Fu Y, Wang Y, Du L, et al. Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation[J]. Int J Mol Sci, 2013, 14(7):14105-14118. doi: 10.3390/ijms140714105.
doi: 10.3390/ijms140714105 pmid: 23880858 |
[30] |
Lee S, Shin J, Kim JS, et al. Targeting TBK1 Attenuates LPS-Induced NLRP3 Inflammasome Activation by Regulating of mTORC1 Pathways in Trophoblasts[J]. Front Immunol, 2021, 12:743700. doi: 10.3389/fimmu.2021.743700.
doi: 10.3389/fimmu.2021.743700 |
[31] |
Zhao X, Zhang X, Wu Z, et al. Up-regulation of microRNA-135 or silencing of PCSK6 attenuates inflammatory response in preeclampsia by restricting NLRP3 inflammasome[J]. Mol Med, 2021, 27(1):82. doi: 10.1186/s10020-021-00335-x.
doi: 10.1186/s10020-021-00335-x pmid: 34301174 |
[32] |
Nunes PR, Romao-Veiga M, Matias ML, et al. Vitamin D decreases expression of NLRP1 and NLRP3 inflammasomes in placental explants from women with preeclampsia cultured with hydrogen peroxide[J]. Hum Immunol, 2022, 83(1):74-80. doi: 10.1016/j.humimm.2021.10.002.
doi: 10.1016/j.humimm.2021.10.002 |
[33] |
Nunes PR, Romao-Veiga M, Ribeiro VR, et al. Inflammasomes in placental explants of women with preeclampsia cultured with monosodium urate may be modulated by vitamin D[J]. Hypertens Pregnancy, 2022, 41(2):139-148. doi: 10.1080/10641955.2022.2063330.
doi: 10.1080/10641955.2022.2063330 pmid: 35400286 |
[1] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
[2] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[3] | ZHANG Yong-qing, CHEN Zheng-yun, CHEN Lu-ping, YAN Guo-hui, CHEN Dan-qing. Two Cases of Term Angular Pregnancy Identified during Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 153-157. |
[4] | CHEN Xiao-juan, ZHANG Yan-xin. A Case of Full-Term Delivery in A Pregnant Patient with Hemophilia A [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 158-160. |
[5] | GENG Hao, CHEN Xu. The Characteristics of Premature Labor and Intrapartum Management [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 105-109. |
[6] | HOU Chun-yan, DU Xiu-ping. Two Cases of Spontaneous Uterine Rupture in the Middle and Late Stages of Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 110-113. |
[7] | ZHONG Pei-qu, ZHAO Li-jian, ZOU Xin-xin. A Case of Rudimentary Horn Pregnancy Undergoing Expectant Treatment until the Third Trimester [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 114-116. |
[8] | CHEN Shu-lin, QIAO Qiao. Relationship between Vaginal Epithelial Injury Repair and Microecological Environment [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 52-56. |
[9] | WANG Jing, WANG Yong-hong. Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia: A Review [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 88-93. |
[10] | ZHANG Wen, LIU Hui-qiang. The Role of SOCS1 and Exosomal MicroRNA in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 94-98. |
[11] | WANG Yi-dan, WANG Yong-hong. The Role of the Transforming Growth Factor-β Superfamily in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 99-104. |
[12] | FAN Bo-yang, HU Li-yan. Research Advancements on the Pathogenesis and Prediction Approaches of Twin Pregnancies Complicated with Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 611-615. |
[13] | LIN Huan-yu, YU Min, LU Xu-hong. Research Progress on High-Risk Factors for Postpartum Pelvic Floor Dysfunction [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 620-623. |
[14] | MA Guo-xia, WANG Jia-li, MIAO He-zhen, YAN Yu, LIU Jia-jia, YANG Yong-xiu. Pregnancy Complicated with Ebstein Anomaly: Two Cases Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 624-628. |
[15] | CHEN Hui-yun, HAN Bing, CHEN Jie, ZHANG Jie, ZHANG He, ZHANG Ying-hui. A Case of Pregnancy Complicated with Neuropsychiatric Systemic Lupus Erythematosus [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 629-631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||