Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (5): 497-501.doi: 10.12280/gjfckx.20230425
Previous Articles Next Articles
JI En-ting, XU Ya-xuan, ZHANG Chun-ren, HU Min, MA Hong-xia()
Received:
2023-06-07
Published:
2023-10-15
Online:
2023-10-16
Contact:
MA Hong-xia, E-mail: JI En-ting, XU Ya-xuan, ZHANG Chun-ren, HU Min, MA Hong-xia. Study on the Role of Placental Mitochondrial Function in the Pathogenesis of Pregnancy Complications[J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 497-501.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Lu M, Sferruzzi-Perri AN. Placental mitochondrial function in response to gestational exposures[J]. Placenta, 2021, 104:124-137. doi: 10.1016/j.placenta.2020.11.012.
pmid: 33338764 |
[2] | Reijnders IF, Mulders A, Koster M. Placental development and function in women with a history of placenta-related complications: a systematic review[J]. Acta Obstet Gynecol Scand, 2018, 97(3):248-257. doi: 10.1111/aogs.13259. |
[3] | Zhang X, He X, Wei L, et al. NRF2 protects against ROS-induced preterm premature rupture of membranes through regulation of mitochondria[J]. Biol Reprod,2023 Jul 10;ioad075. doi: 10.1093/biolre/ioad075. |
[4] | Sferruzzi-Perri AN, Lopez-Tello J, Salazar-Petres E. Placental adaptations supporting fetal growth during normal and adverse gestational environments[J]. Exp Physiol, 2023, 108(3):371-397. doi: 10.1113/EP090442. |
[5] | Jahan F, Vasam G, Green AE, et al. Placental Mitochondrial Function and Dysfunction in Preeclampsia[J]. Int J Mol Sci, 2023, 24(4):4177. doi: 10.3390/ijms24044177. |
[6] | Fisher JJ, Bartho LA, Perkins AV, et al. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy[J]. Clin Exp Pharmacol Physiol, 2020, 47(1):176-184. doi: 10.1111/1440-1681.13172. |
[7] |
Seok J, Jun S, Cho J, et al. Human placenta-derived mesenchymal stem cells induce trophoblast invasion via dynamic effects on mitochondrial function[J]. J Cell Physiol, 2021, 236(9):6678-6690. doi: 10.1002/jcp.30330.
pmid: 33624308 |
[8] |
Lyu SW, Song H, Yoon JA, et al. Transcriptional profiling with a pathway-oriented analysis in the placental villi of unexplained miscarriage[J]. Placenta, 2013, 34(2):133-140. doi: 10.1016/j.placenta.2012.12.003.
pmid: 23266290 |
[9] | Li Y, Zhang CL, Zhang SD. Infertility treatment for Chinese women with P450 oxidoreductase deficiency: Prospect on clinical management from IVF to FET[J]. Front Endocrinol(Lausanne), 2022, 13:1019696. doi: 10.3389/fendo.2022.1019696. |
[10] | Hu M, Zhang Y, Ma S, et al. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome[J]. Mol Hum Reprod, 2021, 27(12):gaab067. doi: 10.1093/molehr/gaab067. |
[11] |
Cai H, Chen L, Zhang M, et al. Low expression of MFN2 is associated with early unexplained miscarriage by regulating autophagy of trophoblast cells[J]. Placenta, 2018, 70:34-40. doi: 10.1016/j.placenta.2018.08.005.
pmid: 30316324 |
[12] |
Wang W, Wang R, Zhang Q, et al. Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion[J]. Environ Pollut, 2018, 233:820-832. doi: 10.1016/j.envpol.2017.11.022.
pmid: 29144987 |
[13] |
Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development[J]. J Cell Biol, 2003, 160(2):189-200. doi: 10.1083/jcb.200211046.
pmid: 12527753 |
[14] |
Fatima N, Ahmed SH, Chauhan SS, et al. Structural equation modelling analysis determining causal role among methyltransferases, methylation, and apoptosis during human pregnancy and abortion[J]. Sci Rep, 2020, 10(1):12408. doi: 10.1038/s41598-020-68270-1.
pmid: 32709893 |
[15] | Michita RT, Zambra F, Fraga LR, et al. The role of FAS, FAS-L, BAX, and BCL-2 gene polymorphisms in determining susceptibility to unexplained recurrent pregnancy loss[J]. J Assist Reprod Genet, 2019, 36(5):995-1002. doi: 10.1007/s10815-019-01441-w. |
[16] |
Pang W, Zhang Y, Zhao N, et al. Low expression of Mfn2 is associated with mitochondrial damage and apoptosis in the placental villi of early unexplained miscarriage[J]. Placenta, 2013, 34(7):613-618. doi: 10.1016/j.placenta.2013.03.013.
pmid: 23601695 |
[17] | Long J, Huang Y, Wang G, et al. Mitochondrial ROS Accumulation Contributes to Maternal Hypertension and Impaired Remodeling of Spiral Artery but Not IUGR in a Rat PE Model Caused by Maternal Glucocorticoid Exposure[J]. Antioxidants(Basel), 2023, 12(5):987. doi: 10.3390/antiox12050987. |
[18] |
Gillmore T, Farrell A, Alahari S, et al. Dichotomy in hypoxia-induced mitochondrial fission in placental mesenchymal cells during development and preeclampsia: consequences for trophoblast mitochondrial homeostasis[J]. Cell Death Dis, 2022, 13(2):191. doi: 10.1038/s41419-022-04641-y.
pmid: 35220394 |
[19] |
Zhou X, Zhao X, Zhou W, et al. Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia[J]. Sci Rep, 2021, 11(1):20469. doi: 10.1038/s41598-021-99837-1.
pmid: 34650122 |
[20] |
Zhou X, Han TL, Chen H, et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia[J]. Exp Cell Res, 2017, 359(1):195-204. doi: 10.1016/j.yexcr.2017.07.029.
pmid: 28751269 |
[21] |
Ricci CA, Reid DM, Sun J, et al. Maternal and fetal mitochondrial gene dysregulation in hypertensive disorders of pregnancy[J]. Physiol Genomics, 2023, 55(7):275-285. doi: 10.1152/physiolgenomics.00005.2023.
pmid: 37184228 |
[22] |
Holland OJ, Cuffe J, Dekker Nitert M, et al. Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery[J]. Cell Death Dis, 2018, 9(12):1150. doi: 10.1038/s41419-018-1190-9.
pmid: 30455461 |
[23] |
Vangrieken P, Al-Nasiry S, Bast A, et al. Placental Mitochondrial Abnormalities in Preeclampsia[J]. Reprod Sci, 2021, 28(8):2186-2199. doi: 10.1007/s43032-021-00464-y.
pmid: 33523425 |
[24] | Mishra JS, Blesson CS, Kumar S. Testosterone Decreases Placental Mitochondrial Content and Cellular Bioenergetics[J]. Biology(Basel), 2020, 9(7):176. doi: 10.3390/biology9070176. |
[25] | Myatt L, Muralimanoharan S, Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA′s and mitochondria[J]. Adv Exp Med Biol, 2014, 814:133-146. doi: 10.1007/978-1-4939-1031-1_12. |
[26] |
Williamson RD, McCarthy FP, Khashan AS, et al. Exploring the role of mitochondrial dysfunction in the pathophysiology of pre-eclampsia[J]. Pregnancy Hypertens, 2018, 13:248-253. doi: 10.1016/j.preghy.2018.06.012.
pmid: 30177060 |
[27] | Goulopoulou S, Matsumoto T, Bomfim GF, et al. Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia[J]. Clin Sci(Lond), 2012, 123(7):429-435. doi: 10.1042/CS20120130. |
[28] |
Williamson RD, McCarthy FP, Kenny LC, et al. Activation of a TLR9 mediated innate immune response in preeclampsia[J]. Sci Rep, 2019, 9(1):5920. doi: 10.1038/s41598-019-42551-w.
pmid: 30976066 |
[29] |
Sweeting A, Wong J, Murphy HR, et al. A Clinical Update on Gestational Diabetes Mellitus[J]. Endocr Rev, 2022, 43(5):763-793. doi: 10.1210/endrev/bnac003.
pmid: 35041752 |
[30] | Gao C, Sun X, Lu L, et al. Prevalence of gestational diabetes mellitus in mainland China: A systematic review and meta-analysis[J]. J Diabetes Investig, 2019, 10(1):154-162. doi: 10.1111/jdi.12854. |
[31] | Joo EH, Kim YR, Kim N, et al. Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth[J]. Int J Mol Sci, 2021, 22(18):10122. doi: 10.3390/ijms221810122. |
[32] |
Berezhnov AV, Soutar MP, Fedotova EI, et al. Intracellular pH Modulates Autophagy and Mitophagy[J]. J Biol Chem, 2016, 291(16):8701-8708. doi: 10.1074/jbc.M115.691774.
pmid: 26893374 |
[33] | Ramírez MA, Morales J, Cornejo M, et al. Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt A):1192-1202. doi: 10.1016/j.bbadis.2018.01.032. |
[34] | Wang JJ, Wang X, Li Q, et al. Feto-placental endothelial dysfunction in Gestational Diabetes Mellitus under dietary or insulin therapy[J]. BMC Endocr Disord, 2023, 23(1):48. doi: 10.1186/s12902-023-01305-6. |
[35] |
Sultan SA, Liu W, Peng Y, et al. The Role of Maternal Gestational Diabetes in Inducing Fetal Endothelial Dysfunction[J]. J Cell Physiol, 2015, 230(11):2695-2705. doi: 10.1002/jcp.24993.
pmid: 25808705 |
[36] | Fisher JJ, Vanderpeet CL, Bartho LA, et al. Mitochondrial dysfunction in placental trophoblast cells experiencing gestational diabetes mellitus[J]. J Physiol, 2021, 599(4):1291-1305. doi: 10.1113/JP280593. |
[37] | Valent AM, Choi H, Kolahi KS, et al. Hyperglycemia and gestational diabetes suppress placental glycolysis and mitochondrial function and alter lipid processing[J]. FASEB J, 2021, 35(3):e21423. doi: 10.1096/fj.202000326RR. |
[38] | Boyle KE, Hwang H, Janssen RC, et al. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle[J]. PLoS One, 2014, 9(9):e106872. doi: 10.1371/journal.pone.0106872. |
[39] | Phillips EA, Hendricks N, Bucher M, et al. Vitamin D Supplementation Improves Mitochondrial Function and Reduces Inflammation in Placentae of Obese Women[J]. Front Endocrinol(Lausanne), 2022, 13:893848. doi: 10.3389/fendo.2022.893848. |
[40] | Reiter RJ, Ma Q, Sharma R. Melatonin in Mitochondria: Mitigating Clear and Present Dangers[J]. Physiology (Bethesda), 2020, 35(2):86-95. doi: 10.1152/physiol.00034.2019. |
[41] | Morimoto Y, Gamage U, Yamochi T, et al. Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases[J]. Int J Mol Sci, 2023, 24(3):2738. doi: 10.3390/ijms24032738. |
[42] | Xu X, Ye X, Zhu M, et al. FtMt reduces oxidative stress-induced trophoblast cell dysfunction via the HIF-1α/VEGF signaling pathway[J]. BMC Pregnancy Childbirth, 2023, 23(1):131. doi: 10.1186/s12884-023-05448-1. |
[1] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
[2] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[3] | ZHANG Yong-qing, CHEN Zheng-yun, CHEN Lu-ping, YAN Guo-hui, CHEN Dan-qing. Two Cases of Term Angular Pregnancy Identified during Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 153-157. |
[4] | QI Dan-dan, ZHU Hai-ying, CAO Hai-ru, ZHANG Yue-min. Mechanisms of Mitochondrial Dysfunction Regulating Ovarian Aging [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 61-65. |
[5] | WANG Jing, WANG Yong-hong. Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia: A Review [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 88-93. |
[6] | ZHANG Wen, LIU Hui-qiang. The Role of SOCS1 and Exosomal MicroRNA in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 94-98. |
[7] | WANG Yi-dan, WANG Yong-hong. The Role of the Transforming Growth Factor-β Superfamily in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 99-104. |
[8] | FAN Bo-yang, HU Li-yan. Research Advancements on the Pathogenesis and Prediction Approaches of Twin Pregnancies Complicated with Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 611-615. |
[9] | DENG Ling-ling, WU Shao-wen, ZHANG Wei-yuan. Research Progress on Low-Dose Aspirin in the Prevention of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 515-518. |
[10] | ZHANG Qi, WANG Xin, REN Yi, LIU Chao, GAO Hui-jie. Research Progress on SLRPs in Placental Development and Pregnancy-Related Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 525-530. |
[11] | ZHANG Yi-tian, LI Xiao-li. The Role and Treatment of Mitochondria in Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 375-379. |
[12] | ZHANG Yan, HU Meng-ying, WANG Hua, DONG Qu-long. Progress in The Application of Ultrasound-Guided High Intensity Focused Ultrasound in Gynecological and Obstetric Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 406-411. |
[13] | REN Yi, HU Yu-lian, WANG Xin, ZHANG Qi, LIU Chao, GAO Hui-jie. Clinical Application and Modern Pharmacological Progress of Traditional Chinese Medicine in Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 442-447. |
[14] | ZHAO Li-xia, WANG Xiao-qing. Confused Problem of Magnesium Sulfate in the Treatment of Preeclampsia and Its Adverse Effects [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 448-452. |
[15] | WU Zhi-wei, LIN Xue-yan, ZHANG Xue-qin, YANG Mei-lin. The Prevention and Prediction of Pre-Eclampsia: Recent Advances and the Way Forward [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 312-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||