国际妇产科学杂志 ›› 2024, Vol. 51 ›› Issue (5): 572-577.doi: 10.12280/gjfckx.20240489

• 妇科肿瘤研究: 综述 • 上一篇    下一篇

人工智能在子宫内膜癌诊治中的应用与展望

何清, 胡红波()   

  1. 524023 广东省湛江市,广东医科大学第一临床医学院(何清);广东医科大学粤北人民医院(胡红波)
  • 收稿日期:2024-05-26 出版日期:2024-10-15 发布日期:2024-10-17
  • 通讯作者: 胡红波,E-mail:sgwq122@163.com
  • 作者简介:审校者
  • 基金资助:
    韶关市科技计划项目(高水平医院建设科研项目)(211102114530679)

Application and Prospects of Artificial Intelligence in the Diagnosis and Treatment of Endometrial Cancer

HE Qing, HU Hong-bo()   

  1. The First Clinical Medical College of Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China (HE Qing); Yuebei People′s Hospital Affiliated to Guangdong Medical University, Shaoguan 512026, Guangdong Province, China (HU Hong-bo)
  • Received:2024-05-26 Published:2024-10-15 Online:2024-10-17
  • Contact: HU Hong-bo, E-mail: sgwq122@163.com

摘要:

子宫内膜癌发病率的增加推动了对其诊断和治疗方法的创新。其中,人工智能(artificial intelligence,AI)技术,特别是在深度学习和机器学习方面的进展,为提高诊断准确性和构建个性化治疗方案提供了新的可能性。AI通过增强医学影像的解析、自动化病理图像分析以及深入的基因数据解读,显著提升了子宫内膜癌的早期发现和诊断精度。此外,AI的应用还助力于个性化治疗决策和预后评估,通过整合多源数据,精确预测治疗效果。近期,研究聚焦于数据融合、实时患者监控的应用,使AI技术在全面管理子宫内膜癌患者方面的潜力得到进一步挖掘。尽管如此,AI的广泛应用仍面临数据品质、泛化与解释性挑战,以及相关法律伦理问题。因此,实现AI在子宫内膜癌全疗程管理中的应用,既需要持续的技术革新,也需跨学科协作,保障技术的合理、透明和安全应用。这为未来医疗卫生领域的发展带来了积极展望,旨在通过科技手段优化治疗效果并提升患者生活品质。

关键词: 子宫内膜肿瘤, 人工智能, 机器学习, 预后, 诊断

Abstract:

The increasing incidence of endometrial cancer has driven innovations in diagnostic and therapeutic approaches. Among these, artificial intelligence (AI) technologies, particularly advances in deep learning and machine learning, have opened up new possibilities for improving diagnostic accuracy and developing personalized treatment plans. AI significantly enhances early detection and diagnostic precision for endometrial cancer through improved medical image analysis, automated pathological image interpretation, and in-depth genomic data analysis. Additionally, AI aids in personalized treatment decisions and prognosis evaluation by integrating multi-source data to accurately predict treatment outcomes. Recent research has focused on data fusion and real-time patient monitoring applications, further exploring AI′s potential in the comprehensive management of endometrial cancer patients. However, the widespread application of AI still faces challenges related to data quality, generalization, interpretability, and associated legal and ethical issues. Therefore, realizing the full potential of AI in the entire management process of endometrial cancer requires continuous technological innovation and interdisciplinary collaboration to ensure the reasonable, transparent, and safe application of these technologies. This presents a positive outlook for the future of healthcare, aiming to optimize treatment outcomes and improve patients′ quality of life through technological advancements.

Key words: Endometrial neoplasms, Artificial intelligence, Machine learning, Prognosis, Diagnosis