[1] |
Crosbie EJ, Kitson SJ, McAlpine JN, et al. Endometrial cancer[J]. Lancet, 2022, 399(10333):1412-1428. doi: 10.1016/S0140-6736(22)00323-3.
pmid: 35397864
|
[2] |
Amant F, Mirza MR, Koskas M, et al. Cancer of the corpus uteri[J]. Int J Gynaecol Obstet, 2018, 143(Suppl 2):37-50. doi: 10.1002/ijgo.12612.
|
[3] |
Berek JS, Matias-Guiu X, Creutzberg C, et al. FIGO staging of endometrial cancer: 2023[J]. Int J Gynaecol Obstet, 2023, 162(2):383-394. doi: 10.1002/ijgo.14923.
|
[4] |
Zheng Y, Jiang P, Tu Y, et al. Incidence, risk factors, and a prognostic nomogram for distant metastasis in endometrial cancer: A SEER-based study[J]. Int J Gynaecol Obstet, 2024, 165(2):655-665. doi: 10.1002/ijgo.15264.
|
[5] |
Gomes B, Ashley EA. Artificial Intelligence in Molecular Medicine[J]. N Engl J Med, 2023, 388(26):2456-2465. doi: 10.1056/NEJMra2204787.
|
[6] |
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning[J]. Transl Vis Sci Technol, 2020, 9(2):14. doi: 10.1167/tvst.9.2.14.
|
[7] |
Huang S, Yang J, Shen N, et al. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective[J]. Semin Cancer Biol, 2023, 89:30-37. doi: 10.1016/j.semcancer.2023.01.006.
pmid: 36682439
|
[8] |
Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial Intelligence in Cardiology[J]. J Am Coll Cardiol, 2018, 71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.
pmid: 29880128
|
[9] |
Jiang Y, Yang M, Wang S, et al. Emerging role of deep learning-based artificial intelligence in tumor pathology[J]. Cancer Commun(Lond), 2020, 40(4):154-166. doi: 10.1002/cac2.12012.
|
[10] |
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1):44-56. doi: 10.1038/s41591-018-0300-7.
pmid: 30617339
|
[11] |
Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician[J]. PeerJ, 2019,7:e7702. doi: 10.7717/peerj.7702.
|
[12] |
Akazawa M, Hashimoto K, Noda K, et al. The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study[J]. Obstet Gynecol Sci, 2021, 64(3):266-273. doi: 10.5468/ogs.20248.
|
[13] |
Malapelle U, Orsulic S. Editorial: Molecular pathology and computational image analyses in gynecologic malignancies[J]. Front Oncol, 2022,12:1082220. doi: 10.3389/fonc.2022.1082220.
|
[14] |
Seol A, Kim SI, Kim HS, et al. Impact of computed tomography-determined sarcopenia and artificial intelligence-driven waist skeletal muscle volume on survival outcome in endometrial cancer[J]. Int J Gynecol Cancer, 2021,31:A80-A81. doi: 10.1136/ijgc-2021-IGCS.197.
|
[15] |
Huang YT, Huang YL, Ng KK, et al. Current Status of Magnetic Resonance Imaging in Patients with Malignant Uterine Neoplasms: A Review[J]. Korean J Radiol, 2019, 20(1):18-33. doi: 10.3348/kjr.2018.0090.
|
[16] |
Dong HC, Dong HK, Yu MH, et al. Using Deep Learning with Convolutional Neural Network Approach to Identify the Invasion Depth of Endometrial Cancer in Myometrium Using MR Images: A Pilot Study[J]. Int J Environ Res Public Health, 2020, 17(16):5993. doi: 10.3390/ijerph17165993.
|
[17] |
Zhang Y, Gong C, Zheng L, et al. Deep Learning for Intelligent Recognition and Prediction of Endometrial Cancer[J]. J Healthc Eng, 2021,2021:1148309. doi: 10.1155/2021/1148309.
|
[18] |
Coada CA, Santoro M, Zybin V, et al. A Radiomic-Based Machine Learning Model Predicts Endometrial Cancer Recurrence Using Preoperative CT Radiomic Features: A Pilot Study[J]. Cancers(Basel), 2023, 15(18):4534. doi: 10.3390/cancers15184534.
|
[19] |
Leo E, Stanzione A, Miele M, et al. Artificial Intelligence and Radiomics for Endometrial Cancer MRI: Exploring the Whats, Whys and Hows[J]. J Clin Med, 2023, 13(1):226. doi: 10.3390/jcm13010226.
|
[20] |
Shrestha P, Poudyal B, Yadollahi S, et al. A systematic review on the use of artificial intelligence in gynecologic imaging-Background, state of the art, and future directions[J]. Gynecol Oncol, 2022, 166(3):596-605. doi: 10.1016/j.ygyno.2022.07.024.
pmid: 35914978
|
[21] |
Urushibara A, Saida T, Mori K, et al. The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists[J]. BMC Med Imaging, 2022, 22(1):80. doi: 10.1186/s12880-022-00808-3.
pmid: 35501705
|
[22] |
Park JH, Kim EY, Luchini C, et al. Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review[J]. Int J Mol Sci, 2022, 23(5):2462. doi: 10.3390/ijms23052462.
|
[23] |
Erdemoglu E, Serel TA, Karacan E, et al. Artificial intelligence for prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women[J]. AJOG Glob Rep, 2023, 3(1):100154. doi: 10.1016/j.xagr.2022.100154.
|
[24] |
Fell C, Mohammadi M, Morrison D, et al. Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence[J]. PLoS One, 2023, 18(3):e0282577. doi: 10.1371/journal.pone.0282577.
|
[25] |
Feng M, Zhao Y, Chen J, et al. A deep learning model for lymph node metastasis prediction based on digital histopathological images of primary endometrial cancer[J]. Quant Imaging Med Surg, 2023, 13(3):1899-1913. doi: 10.21037/qims-22-220.
|
[26] |
Haznedar B, Arslan MT, Kalinli A. Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data[J]. Med Biol Eng Comput, 2021, 59(3):497-509. doi: 10.1007/s11517-021-02331-z.
pmid: 33543413
|
[27] |
López-Reig R, Fernández-Serra A, Romero I, et al. Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel[J]. Sci Rep, 2019, 9(1):18093. doi: 10.1038/s41598-019-54624-x.
pmid: 31792358
|
[28] |
Stan A, Bosart K, Kaur M, et al. Detection of driver mutations and genomic signatures in endometrial cancers using artificial intelligence algorithms[J]. PLoS One, 2024, 19(2):e0299114. doi: 10.1371/journal.pone.0299114.
|
[29] |
Khalifa NEM, Taha MHN, Ali DE, et al. Artificial Intelligence Technique for Gene Expression by Tumor RNA-Seq Data: A Novel Optimized Deep Learning Approach[J]. IEEE Access, 2020, 8:22874-22883. doi: 10.1109/ACCESS.2020.2970210.
|
[30] |
Chi CL, Wang J, Ying Yew P, et al. Producing personalized statin treatment plans to optimize clinical outcomes using big data and machine learning[J]. J Biomed Inform, 2022,128:104029. doi: 10.1016/j.jbi.2022.104029.
|
[31] |
Ramírez A, Ogonaga-Borja I, Acosta B, et al. Ion Channels and Personalized Medicine in Gynecological Cancers[J]. Pharmaceuticals(Basel), 2023, 16(6):800. doi: 10.3390/ph16060800.
|
[32] |
Ajdari A, Liao Z, Mohan R, et al. Personalized mid-course FDG-PET based adaptive treatment planning for non-small cell lung cancer using machine learning and optimization[J]. Phys Med Biol, 2022, 67(18):10.1088/1361-6560/ac88b3. doi: 10.1088/1361-6560/ac88b3.
|
[33] |
Butt SR, Soulat A, Lal PM, et al. Impact of artificial intelligence on the diagnosis, treatment and prognosis of endometrial cancer[J]. Ann Med Surg(Lond), 2024, 86(3):1531-1539. doi: 10.1097/MS9.0000000000001733.
|
[34] |
Bhardwaj V, Sharma A, Parambath SV, et al. Machine Learning for Endometrial Cancer Prediction and Prognostication[J]. Front Oncol, 2022,12:852746. doi: 10.3389/fonc.2022.852746.
|
[35] |
Mao W, Chen C, Gao H, et al. A deep learning-based automatic staging method for early endometrial cancer on MRI images[J]. Front Physiol, 2022,13:974245. doi: 10.3389/fphys.2022.974245.
|
[36] |
Hong R, Liu W, DeLair D, et al. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models[J]. Cell Rep Med, 2021, 2(9):100400. doi: 10.1016/j.xcrm.2021.100400.
|
[37] |
Siontis KC, Friedman PA. The Role of Artificial Intelligence in Arrhythmia Monitoring[J]. Card Electrophysiol Clin, 2021, 13(3):543-554. doi: 10.1016/j.ccep.2021.04.011.
pmid: 34330380
|
[38] |
Forooghifar F, Aminifar A, Cammoun L, et al. A Self-Aware Epilepsy Monitoring System for Real-Time Epileptic Seizure Detection[J]. Mobile Networks Applications, 2022, 27(2):677-690. doi: 10.1007/s11036-019-01322-7.
|
[39] |
Choi SH, Yoon H. Convolutional Neural Networks for the Real-Time Monitoring of Vital Signs Based on Impulse Radio Ultrawide-Band Radar during Sleep[J]. Sensors(Basel), 2023, 23(6):3116. doi: 10.3390/s23063116.
|