[1] |
Xu D, Wu L, Jiang X, et al. SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation[J]. Int J Mol Sci, 2019, 20(6):1365. doi: 10.3390/ijms20061365.
|
[2] |
Li C, He X, Huang Z, et al. Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway[J]. Aging(Albany NY), 2020, 12(2):1610-1623. doi: 10.18632/aging.102703.
|
[3] |
Zhang FL, Li WD, Zhu KX, et al. Aging-related aneuploidy is associated with mitochondrial imbalance and failure of spindle assembly[J]. Cell Death Discov, 2023, 9(1):235. doi: 10.1038/s41420-023-01539-2.
|
[4] |
L T, A E, L C, et al. Impact of maternally derived meiotic aneuploidies on early embryonic development in vitro[J]. J Assist Reprod Genet, 2023, 40(11):2715-2723. doi: 10.1007/s10815-023-02922-9.
|
[5] |
Xu D, He H, Jiang X, et al. SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells[J]. J Steroid Biochem Mol Biol, 2019, 185:27-38. doi: 10.1016/j.jsbmb.2018.07.005.
|
[6] |
Ferreira AF, Machado-Simões J, Soares M, et al. Spatiotemporal dynamics of SIRT 1, 2 and 3 during in vitro maturation of bovine oocytes[J]. Theriogenology, 2022, 186:60-69. doi: 10.1016/j.theriogenology.2022.04.004.
pmid: 35430549
|
[7] |
Grazul-Bilska AT, Reynolds LP, Redmer DA. Gap junctions in the ovaries[J]. Biol Reprod, 1997, 57(5):947-957. doi: 10.1095/biolreprod57.5.947.
pmid: 9369157
|
[8] |
Xu D, He H, Liu D, et al. A novel role of SIRT2 in regulating gap junction communications via connexin-43 in bovine cumulus-oocyte complexes[J]. J Cell Physiol, 2020, 235(10):7332-7343. doi: 10.1002/jcp.29634.
pmid: 32039484
|
[9] |
Duan J, Chen H, Li Y, et al. 17β-Estradiol Enhances Porcine Meiosis Resumption from Autophagy-Induced Gap Junction Intercellular Communications and Connexin 43 Phosphorylation via the MEK/ERK Signaling Pathway[J]. J Agric Food Chem, 2021, 69(40):11847-11855. doi: 10.1021/acs.jafc.1c04212.
|
[10] |
Zhang H, Wei Q, Gao Z, et al. G protein-coupled receptor 30 mediates meiosis resumption and gap junction communications downregulation in goat cumulus-oocyte complexes by 17β-estradiol[J]. J Steroid Biochem Mol Biol, 2019, 187:58-67. doi: 10.1016/j.jsbmb.2018.11.001.
|
[11] |
Li Y, Chang HM, Sung YW, et al. Betacellulin regulates gap junction intercellular communication by inducing the phosphorylation of connexin 43 in human granulosa-lutein cells[J]. J Ovarian Res, 2023, 16(1):103. doi: 10.1186/s13048-023-01185-3.
pmid: 37231448
|
[12] |
Luciano AM, Franciosi F, Modina SC, et al. Gap junction-mediated communications regulate chromatin remodeling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s)[J]. Biol Reprod, 2011, 85(6):1252-1259. doi: 10.1095/biolreprod.111.092858.
pmid: 21816847
|
[13] |
Richani D, Gilchrist RB. Approaches to oocyte meiotic arrest in vitro and impact on oocyte developmental competence[J]. Biol Reprod, 2022, 106(2):243-252. doi: 10.1093/biolre/ioab176.
|
[14] |
Lee BM, Chun JL, Lee JH, et al. Follistatin Rescues Blastocyst Development of Poor Quality Porcine Cumulus-Oocyte Complexes by Delaying Meiotic Resumption With Decreased cGMP[J]. Reprod Sci, 2018, 25(5):759-772. doi: 10.1177/1933719117725829.
pmid: 28845753
|
[15] |
Shogren-Knaak M, Ishii H, Sun JM, et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions[J]. Science, 2006, 311(5762):844-847. doi: 10.1126/science.1124000.
pmid: 16469925
|
[16] |
Ma P, Schultz RM. Histone deacetylase 2(HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse[J]. PLoS Genet, 2013, 9(3):e1003377. doi: 10.1371/journal.pgen.1003377.
|
[17] |
Sui L, Huang R, Yu H, et al. Inhibition of HDAC6 by tubastatin A disrupts mouse oocyte meiosis via regulating histone modifications and mRNA expression[J]. J Cell Physiol, 2020, 235(10):7030-7042. doi: 10.1002/jcp.29599.
pmid: 32017059
|
[18] |
Huang R, Sui L, Fu C, et al. HDAC11 inhibition disrupts porcine oocyte meiosis via regulating α-tubulin acetylation and histone modifications[J]. Aging(Albany NY), 2021, 13(6):8849-8864. doi: 10.18632/aging.202697.
|
[19] |
Robbins AR, Jablonski SA, Yen TJ, et al. Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin[J]. Cell Cycle, 2005, 4(5):717-726. doi: 10.4161/cc.4.5.1690.
pmid: 15846093
|
[20] |
Berenguer I, López-Jiménez P, Mena I, et al. Haspin participates in AURKB recruitment to centromeres and contributes to chromosome congression in male mouse meiosis[J]. J Cell Sci, 2022, 135(13):jcs259546. doi: 10.1242/jcs.259546.
|
[21] |
Liang C, Zhang Z, Chen Q, et al. Centromere-localized Aurora B kinase is required for the fidelity of chromosome segregation[J]. J Cell Biol, 2020, 219(2):e201907092. doi: 10.1083/jcb.201907092.
|
[22] |
Monte-Serrano E, Lazo PA. VRK1 Kinase Activity Modulating Histone H4K16 Acetylation Inhibited by SIRT2 and VRK-IN-1[J]. Int J Mol Sci, 2023, 24(5):4912. doi: 10.3390/ijms24054912.
|
[23] |
Wloga D, Joachimiak E, Fabczak H. Tubulin Post-Translational Modifications and Microtubule Dynamics[J]. Int J Mol Sci, 2017, 18(10):2207. doi: 10.3390/ijms18102207.
|
[24] |
Zou YJ, Shan MM, Wan X, et al. Kinesin KIF15 regulates tubulin acetylation and spindle assembly checkpoint in mouse oocyte meiosis[J]. Cell Mol Life Sci, 2022, 79(8):422. doi: 10.1007/s00018-022-04447-3.
|
[25] |
Wang HH, Zhang Y, Tang F, et al. Rab23/Kif17 regulate meiotic progression in oocytes by modulating tubulin acetylation and actin dynamics[J]. Development, 2019, 146(3):dev171280. doi: 10.1242/dev.171280.
|
[26] |
Tang F, Pan MH, Wan X, et al. Kif18a regulates Sirt2-mediated tubulin acetylation for spindle organization during mouse oocyte meiosis[J]. Cell Div, 2018, 13:9. doi: 10.1186/s13008-018-0042-4.
pmid: 30459823
|
[27] |
Jeon HJ, Oh JS. RASSF1A Regulates Spindle Organization by Modulating Tubulin Acetylation via SIRT2 and HDAC6 in Mouse Oocytes[J]. Front Cell Dev Biol, 2020, 8:601972. doi: 10.3389/fcell.2020.601972.
|
[28] |
Zhang L, Hou X, Ma R, et al. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis[J]. FASEB J, 2014, 28(3):1435-1445. doi: 10.1096/fj.13-244111.
pmid: 24334550
|
[29] |
Portran D, Schaedel L, Xu Z, et al. Tubulin acetylation protects long-lived microtubules against mechanical ageing[J]. Nat Cell Biol, 2017, 19(4):391-398. doi: 10.1038/ncb3481.
pmid: 28250419
|
[30] |
Eshun-Wilson L, Zhang R, Portran D, et al. Effects of α-tubulin acetylation on microtubule structure and stability[J]. Proc Natl Acad Sci U S A, 2019, 116(21):10366-10371. doi: 10.1073/pnas.1900441116.
|
[31] |
Dai X, Zhang M, Lu Y, et al. Cullin9 protects mouse eggs from aneuploidy by controlling microtubule dynamics via Survivin[J]. Biochim Biophys Acta, 2016, 1863(12):2934-2941. doi: 10.1016/j.bbamcr.2016.09.017.
pmid: 27678504
|
[32] |
Skoufias DA, Andreassen PR, Lacroix FB, et al. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints[J]. Proc Natl Acad Sci U S A, 2001, 98(8):4492-4497. doi: 10.1073/pnas.081076898.
|
[33] |
Qiu D, Hou X, Han L, et al. Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality[J]. Aging Cell, 2018, 17(1): e12698 doi: 10.1111/acel.12698.
|
[34] |
Lu PS, Wang Y, Jiao L, et al. Nivalenol affects Cyclin B1 level and activates SAC for cell cycle progression in mouse oocyte meiosis[J]. Cell Prolif, 2022, 55(9):e13277. doi: 10.1111/cpr.13277.
|
[35] |
Aboelenain M, Schindler K, Blengini CS. Evaluation of the Spindle Assembly Checkpoint Integrity in Mouse Oocytes[J]. J Vis Exp, 2022 Sep 13;(187):10.3791/64459. doi: 10.3791/64459.
|
[36] |
Riris S, Webster P, Homer H. Digital multiplexed mRNA analysis of functionally important genes in single human oocytes and correlation of changes in transcript levels with oocyte protein expression[J]. Fertil Steril, 2014, 101(3):857-864. doi: 10.1016/j.fertnstert.2013.11.125.
pmid: 24444598
|
[37] |
North BJ, Rosenberg MA, Jeganathan KB, et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan[J]. EMBO J, 2014, 33(13):1438-1453. doi: 10.15252/embj.201386907.
pmid: 24825348
|
[38] |
Bloom CR, North BJ. Physiological relevance of post-translational regulation of the spindle assembly checkpoint protein BubR1[J]. Cell Biosci, 2021, 11(1):76. doi: 10.1186/s13578-021-00589-2.
pmid: 33892776
|
[39] |
Goutas A, Outskouni Z, Papathanasiou I, et al. The establishment of mitotic errors-driven senescence depends on autophagy[J]. Redox Biol, 2023, 62:102701. doi: 10.1016/j.redox.2023.102701.
|
[40] |
Lagirand-Cantaloube J, Ciabrini C, Charrasse S, et al. Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1[J]. Sci Rep, 2017, 7:44001. doi: 10.1038/srep44001.
pmid: 28287092
|
[41] |
Wang Z, Yu T, Huang P. Post-translational modifications of FOXO family proteins (Review)[J]. Mol Med Rep, 2016, 14(6):4931-4941. doi: 10.3892/mmr.2016.5867.
pmid: 27779663
|
[42] |
Keskin-Aktan A, Akbulut KG, Abdi S, et al. SIRT2 and FOXO3a expressions in the cerebral cortex and hippocampus of young and aged male rats: antioxidant and anti-apoptotic effects of melatonin[J]. Biol Futur, 2022, 73(1):71-85. doi: 10.1007/s42977-021-00102-3.
|
[43] |
Wang F, Nguyen M, Qin FX, et al. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction[J]. Aging Cell, 2007, 6(4):505-514. doi: 10.1111/j.1474-9726.2007.00304.x.
pmid: 17521387
|
[44] |
Zhuan Q, Li J, Du X, et al. Nampt affects mitochondrial function in aged oocytes by mediating the downstream effector FoxO3a[J]. J Cell Physiol, 2022, 237(1):647-659. doi: 10.1002/jcp.30532.
|