[1] |
Bendix I, Miller SL, Winterhager E. Editorial: Causes and Consequences of Intrauterine Growth Restriction[J]. Front Endocrinol(Lausanne), 2020, 11:205. doi: 10.3389/fendo.2020.00205.
|
[2] |
Biesiada L, Sakowicz A, Grzesiak M, et al. Identification of placental genes linked to selective intrauterine growth restriction (IUGR) in dichorionic twin pregnancies: gene expression profiling study[J]. Hum Genet, 2019, 138(6):649-659. doi: 10.1007/s00439-019-02016-6.
pmid: 31041507
|
[3] |
隽娟, 杨慧霞. 胎儿生长受限对围产儿结局及远期健康的影响[J]. 中国实用妇科与产科杂志, 2020, 36(8):710-713. doi: 10.19538/j.fk2020080111.
|
[4] |
Fetal Growth Restriction: ACOG Practice Bulletin, Number 227[J]. Obstet Gynecol, 2021, 137(2):e16-e28. doi: 10.1097/AOG.0000000000004251.
pmid: 33481528
|
[5] |
Eliner Y, Gulersen M, Kasar A, et al. Maternal and Neonatal Complications in Teen Pregnancies: A Comprehensive Study of 661,062 Patients[J]. J Adolesc Health, 2022, 70(6):922-927. doi: 10.1016/j.jadohealth.2021.12.014.
pmid: 35165030
|
[6] |
Karimi-Zarchi M, Zanbagh L, Javaheri A, et al. Association of Insulin-like Growth Factor-Ⅱ Apa1 and MspI Polymorphisms with Intrauterine Growth Restriction Risk[J]. Fetal Pediatr Pathol, 2021, 40(6):605-611. doi: 10.1080/15513815.2020.1745970.
|
[7] |
Kulkarni VG, Sunilkumar KB, Nagaraj TS, et al. Maternal and fetal vascular lesions of malperfusion in the placentas associated with fetal and neonatal death: results of a prospective observational study[J]. Am J Obstet Gynecol, 2021, 225(6):660.e1-e12. doi: 10.1016/j.ajog.2021.06.001.
|
[8] |
Ip S, Griffin A, Lourie R, et al. Chronic villitis of unknown aetiology: an Australian institution′s 5-year experience[J]. Pathology, 2022, 54(7):882-887. doi: 10.1016/j.pathol.2022.03.015.
|
[9] |
Eggenhuizen GM, Go A, Koster M, et al. Confined placental mosaicism and the association with pregnancy outcome and fetal growth: a review of the literature[J]. Hum Reprod Update, 2021, 27(5):885-903. doi: 10.1093/humupd/dmab009.
pmid: 33984128
|
[10] |
Fung C, Zinkhan E. Short- and Long-Term Implications of Small for Gestational Age[J]. Obstet Gynecol Clin North Am, 2021, 48(2):311-323. doi: 10.1016/j.ogc.2021.02.004.
|
[11] |
Hong J, Kumar S. Circulating biomarkers associated with placental dysfunction and their utility for predicting fetal growth restriction[J]. Clin Sci(Lond), 2023, 137(8):579-595. doi: 10.1042/CS20220300.
|
[12] |
牟秋杰, 嵇波, 赵国桢, 等. 电针对孕期饮食限制诱发宫内生长受限大鼠肺发育不良的影响[J]. 中国针灸, 2021, 41(4):405-410. doi: 10.13703/j.0255-2930.20200507-k0008.
|
[13] |
Dai Y, Zhao D, Chen CK, et al. Echocardiographic assessment of fetal cardiac function in the uterine artery ligation rat model of IUGR[J]. Pediatr Res, 2021, 90(4):801-808. doi: 10.1038/s41390-020-01356-8.
pmid: 33504964
|
[14] |
Matre M, Mehl CV, Benum SD, et al. Body composition and physical fitness in adults born small for gestational age at term: a prospective cohort study[J]. Sci Rep, 2023, 13(1):3455. doi: 10.1038/s41598-023-30371-y.
pmid: 36859477
|
[15] |
Stróżewska W, Durda-Masny M, Szwed A. Mutations in GHR and IGF1R Genes as a Potential Reason for the Lack of Catch-Up Growth in SGA Children[J]. Genes(Basel), 2022, 13(5):856. doi: 10.3390/genes13050856.
|
[16] |
Hesse H, Palmer C, Rigdon CD, et al. Differences in body composition and growth persist postnatally in fetuses diagnosed with severe compared to mild fetal growth restriction[J]. J Neonatal Perinatal Med, 2022, 15(3):589-598. doi: 10.3233/NPM-210872.
pmid: 35342050
|
[17] |
侯留杰, 栗河舟, 吴娟, 等. 颅脑超声评估宫内生长受限对新生儿脑发育的影响[J]. 中国医学影像学杂志, 2022, 30(3):261-265. doi: 10.3969/j.issn.1005-5185.2022.03.014.
|
[18] |
张伊佳. 宫内生长受限对神经系统结构和功能影响的研究进展[J]. 中国当代儿科杂志, 2021, 23(11):1184-1189. doi: 10.7499/j.issn.1008-8830.2108044.
|
[19] |
Brown AS, Wieben M, Murdock S, et al. Intrauterine Growth Restriction Causes Abnormal Embryonic Dentate Gyrus Neurogenesis in Mouse Offspring That Leads to Adult Learning and Memory Deficits[J]. eNeuro, 2021, 8(5): ENEURO.0062-21.2021. doi: 10.1523/ENEURO.0062-21.2021.
|
[20] |
Pla L, Illa M, Loreiro C, et al. Structural Brain Changes during the Neonatal Period in a Rabbit Model of Intrauterine Growth Restriction[J]. Dev Neurosci, 2020, 42(5/6):217-229. doi: 10.1159/000512948.
|
[21] |
王京京, 付正英, 张引国. Cofilin、CREB及P38/MAPK分子信号与宫内生长受限大鼠学习记忆障碍的关系[J]. 武警后勤学院学报(医学版), 2017, 26(2):99-103.
|
[22] |
石莉, 符小艳, 王丽, 等. 正常与宫内生长受限胎儿神经系统发育产前超声监测[J]. 中山大学学报(医学科学版), 2020, 41(5):767-773.
|
[23] |
Xu B, Liu C, Zhang H, et al. Skeletal muscle-targeted delivery of Fgf6 protects mice from diet-induced obesity and insulin resistance[J]. JCI Insight, 2021, 6(19):e149969. doi: 10.1172/jci.insight.149969.
|
[24] |
Stremming J, Jansson T, Powell TL, et al. Reduced Na+ K+ -ATPase activity may reduce amino acid uptake in intrauterine growth restricted fetal sheep muscle despite unchanged ex vivo amino acid transporter activity[J]. J Physiol, 2020, 598(8):1625-1639. doi: 10.1113/JP278933.
|
[25] |
Gibbs RL, Yates DT. The Price of Surviving on Adrenaline: Developmental Programming Responses to Chronic Fetal Hypercatecholaminemia Contribute to Poor Muscle Growth Capacity and Metabolic Dysfunction in IUGR-Born Offspring[J]. Front Anim Sci, 2021, 2:769334. doi: 10.3389/fanim.2021.769334.
|
[26] |
Li P, He L, Lan Y, et al. Intrauterine Growth Restriction Induces Adulthood Chronic Metabolic Disorder in Cardiac and Skeletal Muscles[J]. Front Nutr, 2022, 9:929943. doi: 10.3389/fnut.2022.929943.
|
[27] |
唐本玉, 陈丹纯, 郭蕾, 等. 宫内发育迟缓雌性仔鼠早期营养对生长追赶的影响[J]. 中山大学学报(医学科学版), 2019, 40(4):532-539.
|
[28] |
Sreekantha S, Wang Y, Sakurai R, et al. Maternal food restriction-induced intrauterine growth restriction in a rat model leads to sex-specific adipogenic programming[J]. FASEB J, 2020, 34(12):16073-16085. doi: 10.1096/fj.202000985RR.
pmid: 33047380
|
[29] |
Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity[J]. Front Endocrinol(Lausanne), 2022, 13:1041718. doi: 10.3389/fendo.2022.1041718.
|
[30] |
Andermann ML, Lowell BB. Toward a Wiring Diagram Understanding of Appetite Control[J]. Neuron, 2017, 95(4):757-778. doi: 10.1016/j.neuron.2017.06.014.
pmid: 28817798
|
[31] |
Castro-Barquero S, Ruiz-León AM, Sierra-Pérez M, et al. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review[J]. Nutrients, 2020, 12(10):2983. doi: 10.3390/nu12102983.
|
[32] |
Cheng K, Yu C, Li Z, et al. Resveratrol improves meat quality, muscular antioxidant capacity, lipid metabolism and fiber type composition of intrauterine growth retarded pigs[J]. Meat Sci, 2020, 170:108237. doi: 10.1016/j.meatsci.2020.108237.
|
[33] |
Keshavjee B, Lambelet V, Coppola H, et al. Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction[J]. Antioxidants(Basel), 2022, 11(9):1695. doi: 10.3390/antiox11091695.
|
[34] |
卞京, 陈平洋, 卞读军, 等. Lipin基因表达与宫内发育迟缓大鼠肝脏脂肪含量的相关性研究[J]. 中国当代儿科杂志, 2022, 24(4):440-446. doi: 10.7499/j.issn.1008-8830.2110130.
|
[35] |
Liefke J, Steding-Ehrenborg K, Sjöberg P, et al. Higher blood pressure in adolescent boys after very preterm birth and fetal growth restriction[J]. Pediatr Res, 2023, 93(7):2019-2027. doi: 10.1038/s41390-022-02367-3.
|
[36] |
Visentin S, Londero AP, Calanducci M, et al. Fetal Abdominal Aorta: Doppler and Structural Evaluation of Endothelial Function in Intrauterine Growth Restriction and Controls[J]. Ultraschall Med, 2019, 40(1):55-63. doi: 10.1055/s-0043-122230.
pmid: 30253430
|
[37] |
Li M, Zhang Z, Joynauth J, et al. Intrauterine growth restriction neonates present with increased angiogenesis through the Notch1 signaling pathway[J]. Microvasc Res, 2022, 140:104308. doi: 10.1016/j.mvr.2021.104308.
|
[38] |
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension[J]. Integr Blood Press Control, 2021, 14:141-152. doi: 10.2147/IBPC.S312868.
|
[39] |
Sehgal A, Alexander BT, Morrison JL, et al. Fetal Growth Restriction and Hypertension in the Offspring: Mechanistic Links and Therapeutic Directions[J]. J Pediatr, 2020, 224:115-123.e2. doi: 10.1016/j.jpeds.2020.05.028.
|
[40] |
Mutamba AK, He X, Wang T. Therapeutic advances in overcoming intrauterine growth restriction induced metabolic syndrome[J]. Front Pediatr, 2022, 10:1040742. doi: 10.3389/fped.2022.1040742.
|
[41] |
袁冰舒, 李丽娟. 肠道菌群改变影响CG-IUGR大鼠糖代谢的初步研究[J]. 天津医药, 2023, 51(12):1307-1313. doi: 10.11958/20230026.
|
[42] |
Luo D, Mu T, Sun H. Sweet potato (Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice[J]. Food Funct, 2021, 12(9):4117-4131. doi: 10.1039/d0fo02733b.
|