Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (3): 261-266.doi: 10.12280/gjfckx.20210970
• Gynecological Diseases & Related Research:Review • Previous Articles Next Articles
HUANG Qian-qian, WANG Jiao-jian, SONG Dian-rong()
Received:
2021-10-20
Published:
2022-06-15
Online:
2022-06-23
Contact:
SONG Dian-rong
E-mail:songdr58@126.com
HUANG Qian-qian, WANG Jiao-jian, SONG Dian-rong. Construction of Mouse Model of Polycystic Ovary Syndrome[J]. Journal of International Obstetrics and Gynecology, 2022, 49(3): 261-266.
Add to citation manager EndNote|Ris|BibTeX
造模方法 | 造模用药 | 鼠别 | 鼠龄 | 给药方式 | 剂量(时间) | 造模周期(d) |
---|---|---|---|---|---|---|
雄激素造模法 | DHEA | SD大鼠 | 23日龄 | 皮下注射 | 6 mg/100 g | 20 |
DHT | Wistar大鼠 | 5~9日龄 | 皮下注射 | 1.25 mg | 35 | |
TP | SD大鼠 | 21日龄 | 皮下注射 | 2.5~10 mg | 90 | |
雌激素造模法 | EV | SD大鼠 | 4~5周龄 | 皮下注射 | 2~4 mg | 28 |
EB | Wistar大鼠 | 2日龄 | 皮下注射 | 0.5 mg | 90 | |
芳香化酶抑制剂造模法 | 来曲唑 | SD大鼠 | 6周龄 | 灌胃 | 1 mg/kg | 21 |
孕激素造模法 | 孕激素+hCG | SD大鼠 | 23~24日龄 | 皮下埋植+皮下注射 | 左旋18-甲基炔诺酮硅胶棒3 mm/只+ hCG 1.5 IU/次,2次/d | 12 |
胰岛素造模法 | 胰岛素+hCG | SD大鼠 | 6周龄 | 皮下注射 | 1.5~6.0 IU/d hCG+ 0.5~6 IU INS | 22 |
造模方法 | 造模用药 | 鼠别 | 鼠龄 | 给药方式 | 剂量(时间) | 造模周期(d) |
---|---|---|---|---|---|---|
雄激素造模法 | DHEA | SD大鼠 | 23日龄 | 皮下注射 | 6 mg/100 g | 20 |
DHT | Wistar大鼠 | 5~9日龄 | 皮下注射 | 1.25 mg | 35 | |
TP | SD大鼠 | 21日龄 | 皮下注射 | 2.5~10 mg | 90 | |
雌激素造模法 | EV | SD大鼠 | 4~5周龄 | 皮下注射 | 2~4 mg | 28 |
EB | Wistar大鼠 | 2日龄 | 皮下注射 | 0.5 mg | 90 | |
芳香化酶抑制剂造模法 | 来曲唑 | SD大鼠 | 6周龄 | 灌胃 | 1 mg/kg | 21 |
孕激素造模法 | 孕激素+hCG | SD大鼠 | 23~24日龄 | 皮下埋植+皮下注射 | 左旋18-甲基炔诺酮硅胶棒3 mm/只+ hCG 1.5 IU/次,2次/d | 12 |
胰岛素造模法 | 胰岛素+hCG | SD大鼠 | 6周龄 | 皮下注射 | 1.5~6.0 IU/d hCG+ 0.5~6 IU INS | 22 |
[1] |
Li T, Zhang T, Gao H, et al. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction[J]. Redox Biol, 2021, 41:101886. doi: 10.1016/j.redox.2021.101886.
doi: 10.1016/j.redox.2021.101886 |
[2] |
Marshall CJ, Prescott M, Campbell RE. Investigating the NPY/AgRP/GABA to GnRH Neuron Circuit in Prenatally Androgenized PCOS-Like Mice[J]. J Endocr Soc, 2020, 4(11): bvaa129. doi: 10.1210/jendso/bvaa129.
doi: 10.1210/jendso/bvaa129 |
[3] |
Kupreeva M, Diane A, Lehner R, et al. Effect of metformin and flutamide on insulin,lipogenic and androgen-estrogen signaling,and cardiometabolic risk in a PCOS-prone metabolic syndrome rodent model[J]. Am J Physiol Endocrinol Metab, 2019, 316(1):E16-E33. doi: 10.1152/ajpendo.00018.2018.
doi: 10.1152/ajpendo.00018.2018 |
[4] |
Senaldi L, Gopi RP, Milla S, et al. Is ultrasound useful in the diagnosis of adolescents with polycystic ovary syndrome?[J]. J Pediatr Endocrinol Metab, 2015, 28(5/6):605-612. doi: 10.1515/jpem-2014-0307.
doi: 10.1515/jpem-2014-0307 |
[5] |
Crisosto N, Ladrón de Guevara A, Echiburú B, et al. Higher luteinizing hormone levels associated with antimüllerian hormone in postmenarchal daughters of women with polycystic ovary syndrome[J]. Fertil Steril, 2019, 111(2):381-388. doi: 10.1016/j.fertnstert.2018.10.011.
doi: S0015-0282(18)32099-5 pmid: 30527840 |
[6] |
Barker DJ. The fetal and infant origins of adult disease[J]. BMJ, 1990, 301(6761):1111. doi: 10.1136/bmj.301.6761.1111.
doi: 10.1136/bmj.301.6761.1111 |
[7] |
O′Reilly MW, Kempegowda P, Walsh M, et al. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome[J]. J Clin Endocrinol Metab, 2017, 102(9):3327-3339. doi: 10.1210/jc.2017-00947.
doi: 10.1210/jc.2017-00947 |
[8] |
Risal S, Pei Y, Lu H, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome[J]. Nat Med, 2019, 25(12):1894-1904. doi: 10.1038/s41591-019-0666-1.
doi: 10.1038/s41591-019-0666-1 |
[9] |
Moore AM, Prescott M, Campbell RE. Estradiol negative and positive feedback in a prenatal androgen-induced mouse model of polycystic ovarian syndrome[J]. Endocrinology, 2013, 154(2):796-806. doi: 10.1210/en.2012-1954.
doi: 10.1210/en.2012-1954 |
[10] |
Wu XY, Li ZL, Wu CY, et al. Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague-Dawley rats[J]. Endocr J, 2010, 57(3):201-209. doi: 10.1507/endocrj.k09e-205.
doi: 10.1507/endocrj.k09e-205 |
[11] |
Caldwell AS, Eid S, Kay CR, et al. Haplosufficient genomic androgen receptor signaling is adequate to protect female mice from induction of polycystic ovary syndrome features by prenatal hyperandrogenization[J]. Endocrinology, 2015, 156(4):1441-1452. doi: 10.1210/en.2014-1887.
doi: 10.1210/en.2014-1887 pmid: 25643156 |
[12] |
Dewailly D, Barbotin AL, Dumont A, et al. Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome[J]. Front Endocrinol (Lausanne), 2020, 11:641. doi: 10.3389/fendo.2020.00641.
doi: 10.3389/fendo.2020.00641 |
[13] |
Tata B, Mimouni NEH, Barbotin AL, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood[J]. Nat Med, 2018, 24(6):834-846. doi: 10.1038/s41591-018-0035-5.
doi: 10.1038/s41591-018-0035-5 |
[14] |
Stener-Victorin E, Padmanabhan V, Walters KA, et al. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome[J]. Endocr Rev, 2020, 41(4):538-576. doi: 10.1210/endrev/bnaa010.
doi: 10.1210/endrev/bnaa010 |
[15] |
Lee MT, Anderson E, Lee GY. Changes in ovarian morphology and serum hormones in the rat after treatment with dehydroepiandrosterone[J]. Anat Rec, 1991, 231(2):185-192. doi: 10.1002/ar.1092310206.
doi: 10.1002/ar.1092310206 pmid: 1836118 |
[16] |
张晓薇, 邝健全. 脱氢表雄酮诱导多囊卵巢综合征动物模型的研究[J]. 广州医学院学报, 2000, 28(3):14-18. doi: 10.3969/j.issn.1008-1836.2000.03.005.
doi: 10.3969/j.issn.1008-1836.2000.03.005 |
[17] |
Divyashree S, Janhavi P, Ravindra PV, et al. Experimental models of polycystic ovary syndrome: An update[J]. Life Sci, 2019, 237:116911. doi: 10.1016/j.lfs.2019.116911.
doi: 10.1016/j.lfs.2019.116911 |
[18] |
盛哲津, 石嘉豪, 严惠敏, 等. 丙酸睾酮致小鼠多囊卵巢综合症动物模型的建立[J]. 实验动物与比较医学, 2013, 33(5):334-338. doi: 10.3969/j.issn.1674-5817.2013.05.002.
doi: 10.3969/j.issn.1674-5817.2013.05.002 |
[19] |
Azeemuddin M, Anturlikar SD, Onkaramurthy M, et al. Effect of "DXB-2030," a Polyherbal Formulation,on Experimental Polycystic Ovary Syndrome Associated with Hyperandrogenism[J]. Adv Pharmacol Sci,2019, 2019:8272850. doi: 10.1155/2019/8272850.
doi: 10.1155/2019/8272850 |
[20] |
Gao Z, Ma X, Liu J, et al. Troxerutin protects against DHT-induced polycystic ovary syndrome in rats[J]. J Ovarian Res, 2020, 13(1):106. doi: 10.1186/s13048-020-00701-z.
doi: 10.1186/s13048-020-00701-z |
[21] |
Xue P, Wang Z, Fu X, et al. A Hyperandrogenic Mouse Model to Study Polycystic Ovary Syndrome[J]. J Vis Exp, 2018, 140:58379. doi: 10.3791/58379.
doi: 10.3791/58379 |
[22] |
Wang Z, Feng M, Awe O, et al. Gonadotrope androgen receptor mediates pituitary responsiveness to hormones and androgen-induced subfertility[J]. JCI Insight, 2019, 4(17):e127817. doi: 10.1172/jci.insight.127817.
doi: 10.1172/jci.insight.127817 |
[23] |
Fazel Torshizi F, Chamani M, Khodaei HR, et al. Therapeutic effects of organic zinc on reproductive hormones,insulin resistance and mTOR expression,as a novel component,in a rat model of Polycystic ovary syndrome[J]. Iran J Basic Med Sci, 2020, 23(1):36-45. doi: 10.22038/IJBMS.2019.36004.8586.
doi: 10.22038/IJBMS.2019.36004.8586 pmid: 32405346 |
[24] |
Anzai Á, Marcondes RR, Gonçalves TH, et al. Impaired branched-chain amino acid metabolism may underlie the nonalcoholic fatty liver disease-like pathology of neonatal testosterone-treated female rats[J]. Sci Rep, 2017, 7(1):13167. doi: 10.1038/s41598-017-13451-8.
doi: 10.1038/s41598-017-13451-8 |
[25] |
Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome[J]. Biol Reprod, 2012, 86(5):149,1-12. doi: 10.1095/biolreprod.111.097808.
doi: 10.1095/biolreprod.111.097808 |
[26] |
Kafali H, Iriadam M, Ozardali I, et al. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease[J]. Arch Med Res, 2004, 35(2):103-108. doi: 10.1016/j.arcmed.2003.10.005.
doi: 10.1016/j.arcmed.2003.10.005 pmid: 15010188 |
[27] |
Lian Y, Zhao F, Wang W. Use of Bao Gui capsule in treatment of a polycystic ovary syndrome rat model[J]. Mol Med Rep, 2020, 21(3):1461-1470. doi: 10.3892/mmr.2020.10953.
doi: 10.3892/mmr.2020.10953 |
[28] |
Torres PJ, Skarra DV, Ho BS, et al. Letrozole treatment of adult female mice results in a similar reproductive phenotype but distinct changes in metabolism and the gut microbiome compared to pubertal mice[J]. BMC Microbiol, 2019, 19(1):57. doi: 10.1186/s12866-019-1425-7.
doi: 10.1186/s12866-019-1425-7 pmid: 30871463 |
[29] |
Bogovich K. Induction of ovarian cysts in progesterone-synchronized immature rats: evidence that suppression of follicular aromatase activity is not a prerequisite for the induction of cystic follicles[J]. Endocrinology, 1989, 124(4):1646-1653. doi: 10.1210/endo-124-4-1646.
doi: 10.1210/endo-124-4-1646 pmid: 2924717 |
[30] | 朱辉, 倪江, 姚兰春, 等. 大鼠多囊卵巢动物模型的实验研究[J]. 哈尔滨医科大学学报, 1999, 33(3):187-188. |
[31] |
Poretsky L, Piper B. Insulin resistance,hypersecretion of LH,and a dual-defect hypothesis for the pathogenesis of polycystic ovary syndrome[J]. Obstet Gynecol, 1994, 84(4):613-621. doi: 10.1016/0020-7292(95)90027-6.
doi: 10.1016/0020-7292(95)90027-6 pmid: 8090402 |
[32] |
Hong G, Wu H, Ma ST, et al. Catechins from oolong tea improve uterine defects by inhibiting STAT3 signaling in polycystic ovary syndrome mice[J]. Chin Med, 2020, 15(1):125. doi: 10.1186/s13020-020-00405-y.
doi: 10.1186/s13020-020-00405-y |
[33] |
Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article[J]. Eur J Obstet Gynecol Reprod Biol X, 2019, 3:100060. doi: 10.1016/j.eurox.2019.100060.
doi: 10.1016/j.eurox.2019.100060 |
[34] |
Ryan GE, Malik S, Mellon PL. Antiandrogen Treatment Ameliorates Reproductive and Metabolic Phenotypes in the Letrozole-Induced Mouse Model of PCOS[J]. Endocrinology, 2018, 159(4):1734-1747. doi: 10.1210/en.2017-03218.
doi: 10.1210/en.2017-03218 |
[35] |
Marino JS, Iler J, Dowling AR, et al. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS): evidence of adipocyte hypertrophy and tissue-specific inflammation[J]. PLoS One, 2012, 7(10):e48643. doi: 10.1371/journal.pone.0048643.
doi: 10.1371/journal.pone.0048643 |
[36] |
Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives[J]. Appl Clin Genet, 2019, 12:249-260. doi: 10.2147/TACG.S200341.
doi: 10.2147/TACG.S200341 |
[37] |
Risma KA, Clay CM, Nett TM, et al. Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility,polycystic ovaries,and ovarian tumors[J]. Proc Natl Acad Sci U S A, 1995, 92(5):1322-1326. doi: 10.1073/pnas.92.5.1322.
doi: 10.1073/pnas.92.5.1322 pmid: 7877975 |
[38] |
Liu Y, Du SY, Ding M, et al. The BMP4-Smad signaling pathway regulates hyperandrogenism development in a female mouse model[J]. J Biol Chem, 2017, 292(28):11740-11750. doi: 10.1074/jbc.M117.781369.
doi: 10.1074/jbc.M117.781369 |
[39] |
Baldissera SF, Motta LD, Almeida MC, et al. Proposal of an experimental model for the study of polycystic ovaries[J]. Braz J Med Biol Res, 1991, 24(7):747-751. doi: 10.1007/BF02175102.
doi: 10.1007/BF02175102 pmid: 1823293 |
[40] |
Ruiz A, Aguilar R, Tébar AM, et al. RU486-treated rats show endocrine and morphological responses to therapies analogous to responses of women with polycystic ovary syndrome treated with similar therapies[J]. Biol Reprod, 1996, 55(6):1284-1291. doi: 10.1095/biolreprod55.6.1284.
doi: 10.1095/biolreprod55.6.1284 pmid: 8949885 |
[41] |
Ryu Y, Kim YJ, Kim YY, et al. Consecutive Low Doses of Streptozotocin Induce Polycystic Ovary Syndrome Features in Mice[J]. Int J Mol Sci, 2021, 22(3):1299. doi: 10.3390/ijms22031299.
doi: 10.3390/ijms22031299 |
[1] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[2] | YAN Hui-bo, ZHANG Lin. Analysis of the Disease Burden and Projections of Polycystic Ovary Syndrome in China and Globally from 1990 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 228-233. |
[3] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[4] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[5] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
[6] | LI Chen-xi, FAN Meng-xiao, WU Lin-ling, DOU Zhen, JIA Jia, SUN Ya-xuan. Advances in Research on Neuroendocrine Disorders Induced by Hyperandrogenism in Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 698-702. |
[7] | SUN Yi-wen, XIONG Ke, ZHANG Zi-xu, WENG Ya-jing, WANG Yong. The Effect of Bisphenol A on the Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 601-605. |
[8] | LI Zhen-ying, SUN Xiao-tong, XING Guang-yang, LI Jing-jing, LIU Ting-ting, ZHANG Yi-fan. Research Progress on Sphingolipid Metabolism and Benign and Malignant Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 649-654. |
[9] | XU Hui, XIE Xiu-zhen. Research Progress of Negative Emotion in Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 530-534. |
[10] | KOU Li-hui, SONG Dian-rong, GUO Jie. Effects of Negative Emotion on Infertility Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 535-539. |
[11] | GAO Ya, LU Di, SONG Dian-rong. Role of Anti- Müllerian Hormone in Pathogenesis, Diagnosis and Treatment of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 540-544. |
[12] | WANG Lei, ZHANG Ning. The Impact of Intestinal Microbiota Imbalance on the Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 256-260. |
[13] | ZHANG Yu-lin, FENG Xiao-ling. Research Progress on the Regulatory Mechanism of Autophagy on Ovarian Microenvironment [J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 337-342. |
[14] | MAO Jing-xia, PAN Yong-chao, WU Rui-jin. Research Progress of Embryonic Development and the Origin of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 132-137. |
[15] | LIU Yin, LU Di, SONG Dian-rong. The Effect of Insulin Resistance on Reproductive Endocrine and Metabolism of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 190-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||