Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (2): 121-126.doi: 10.12280/gjfckx.20220816
• Obstetric Physiology & Obstetric Disease: Review • Next Articles
WU Ya-mei, LI Meng, LI Jia-wen, YING Hao, HUANG Lu()
Received:
2022-10-10
Published:
2023-04-15
Online:
2023-04-24
Contact:
HUANG Lu, E-mail: WU Ya-mei, LI Meng, LI Jia-wen, YING Hao, HUANG Lu. The Role of Autophagy in Fetal Growth Development and Pregnancy Complications[J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 121-126.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Youle RJ, Narendra DP. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol, 2011, 12(1):9-14. doi: 10.1038/nrm3028.
doi: 10.1038/nrm3028 |
[2] |
DE DUVE C. The lysosome[J]. Sci Am, 1963, 208:64-72. doi: 10.1038/scientificamerican0563-64.
doi: 10.1038/scientificamerican0563-64 pmid: 14025755 |
[3] |
Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS Lett, 1993, 333(1/2):169-174. doi: 10.1016/0014-5793(93)80398-e.
doi: 10.1016/0014-5793(93)80398-e |
[4] |
Yoshii SR, Mizushima N. Monitoring and Measuring Autophagy[J]. Int J Mol Sci, 2017, 18(9):1865. doi: 10.3390/ijms18091865.
doi: 10.3390/ijms18091865 |
[5] |
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses[J]. Life Sci, 2017, 188:53-67. doi: 10.1016/j.lfs.2017.08.029.
doi: S0024-3205(17)30423-X pmid: 28866100 |
[6] |
Zhang P, Ling L, Zheng Z, et al. ATG7-dependent and independent autophagy determine the type of treatment in lung cancer[J]. Pharmacol Res, 2021, 163:105324. doi: 10.1016/j.phrs.2020.105324.
doi: 10.1016/j.phrs.2020.105324 |
[7] |
Muir V, Sagadiev S, Liu S, et al. Transcriptomic analysis of pathways associated with ITGAV/alpha(v) integrin-dependent autophagy in human B cells[J]. Autophagy, 2023, 19(3):926-942. doi: 10.1080/15548627.2022.2113296.
doi: 10.1080/15548627.2022.2113296 |
[8] |
Valencia M, Kim SR, Jang Y, et al. Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology[J]. Biomol Ther(Seoul), 2021, 29(6):605-614. doi: 10.4062/biomolther.2021.012.
doi: 10.4062/biomolther.2021.012 |
[9] |
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson′s Disease[J]. Cells, 2021, 10(12):3547. doi: 10.3390/cells10123547.
doi: 10.3390/cells10123547 |
[10] |
Zhang JJ, Chen KC, Zhou Y, et al. Evaluating the effects of mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice[J]. Phytomedicine, 2022, 104:154341. doi: 10.1016/j.phymed.2022.154341.
doi: 10.1016/j.phymed.2022.154341 |
[11] |
Zeng M, Qi L, Guo Y, et al. Long-Term Administration of Triterpenoids From Ganoderma lucidum Mitigates Age-Associated Brain Physiological Decline via Regulating Sphingolipid Metabolism and Enhancing Autophagy in Mice[J]. Front Aging Neurosci, 2021, 13:628860. doi: 10.3389/fnagi.2021.628860.
doi: 10.3389/fnagi.2021.628860 |
[12] |
Wu B, Chen Y, Clarke R, et al. AMPK Signaling Regulates Mitophagy and Mitochondrial ATP Production in Human Trophoblast Cell Line BeWo[J]. Front Biosci(Landmark Ed), 2022, 27(4):118. doi: 10.31083/j.fbl2704118.
doi: 10.31083/j.fbl2704118 |
[13] |
Yildirim RM, Ergun Y, Basar M. Mitochondrial Dysfunction, Mitophagy and Their Correlation with Perinatal Complications: Preeclampsia and Low Birth Weight[J]. Biomedicines, 2022, 10(10):2539. doi: 10.3390/biomedicines10102539.
doi: 10.3390/biomedicines10102539 |
[14] |
Dagar N, Kale A, Steiger S, et al. Receptor-mediated mitophagy: An emerging therapeutic target in acute kidney injury[J]. Mitochondrion, 2022, 66:82-91. doi: 10.1016/j.mito.2022.08.004.
doi: 10.1016/j.mito.2022.08.004 pmid: 35985440 |
[15] |
Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation[J]. Int J Mol Sci, 2019, 20(13):3328. doi: 10.3390/ijms20133328.
doi: 10.3390/ijms20133328 |
[16] |
Gauster M, Maninger S, Siwetz M, et al. Downregulation of p53 drives autophagy during human trophoblast differentiation[J]. Cell Mol Life Sci, 2018, 75(10):1839-1855. doi: 10.1007/s00018-017-2695-6.
doi: 10.1007/s00018-017-2695-6 pmid: 29080089 |
[17] |
Nakashima A, Yamanaka-Tatematsu M, Fujita N, et al. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia[J]. Autophagy, 2013, 9(3):303-316. doi: 10.4161/auto.22927.
doi: 10.4161/auto.22927 pmid: 23321791 |
[18] |
Gao L, Qi HB, Kamana KC, et al. Excessive autophagy induces the failure of trophoblast invasion and vasculature: possible relevance to the pathogenesis of preeclampsia[J]. J Hypertens, 2015, 33(1):106-117. doi: 10.1097/HJH.0000000000000366.
doi: 10.1097/HJH.0000000000000366 pmid: 25318653 |
[19] |
Yang L, Liu C, Zhang C, et al. LncRNA small nucleolar RNA host gene 5 inhibits trophoblast autophagy in preeclampsia by targeting microRNA-31-5p and promoting the transcription of secreted protein acidic and rich in cysteine[J]. Bioengineered, 2022, 13(3):7221-7237. doi: 10.1080/21655979.2022.2040873.
doi: 10.1080/21655979.2022.2040873 pmid: 35259061 |
[20] |
Zhao H, Gong L, Wu S, et al. The Inhibition of Protein Kinase C RNA host gene 5 inhibits trophoblast autophagy in preeclampting Autophagy[J]. EBioMedicine, 2020, 56:102813. doi: 10.1016/j.ebiom.2020.102813.
doi: 10.1016/j.ebiom.2020.102813 |
[21] |
Chen G, Lin Y, Chen L, et al. Role of DRAM1 in mitophagy contributes to preeclampsia regulation in mice[J]. Mol Med Rep, 2020, 22(3):1847-1858. doi: 10.3892/mmr.2020.11269.
doi: 10.3892/mmr.2020.11269 pmid: 32582984 |
[22] |
Chen G, Chen L, Huang Y, et al. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells[J]. Bioengineered, 2022, 13(2):3620-3633. doi: 10.1080/21655979.2021.1997132.
doi: 10.1080/21655979.2021.1997132 |
[23] |
Zhou X, Zhao X, Zhou W, et al. Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia[J]. Sci Rep, 2021, 11(1):20469. doi: 10.1038/s41598-021-99837-1.
doi: 10.1038/s41598-021-99837-1 pmid: 34650122 |
[24] |
Vangrieken P, Al-Nasiry S, Bast A, et al. Placental Mitochondrial Abnormalities in Preeclampsia[J]. Reprod Sci, 2021, 28(8):2186-2199. doi: 10.1007/s43032-021-00464-y.
doi: 10.1007/s43032-021-00464-y pmid: 33523425 |
[25] | Zhang QX, Na Q, Song W. Altered expression of mTOR and autophagy in term normal human placentas[J]. Rom J Morphol Embryol, 2017, 58(2):517-526. |
[26] |
Hung TH, Hsieh TT, Wu CP, et al. Mammalian target of rapamycin signaling is a mechanistic link between increased endoplasmic reticulum stress and autophagy in the placentas of pregnancies complicated by growth restriction[J]. Placenta, 2017, 60:9-20. doi: 10.1016/j.placenta.2017.10.001.
doi: 10.1016/j.placenta.2017.10.001 |
[27] |
Cao B, Sheth MN, Mysorekar IU. To Zika and destroy: an antimalarial drug protects fetuses from Zika infection[J]. Future Microbiol, 2018, 13:137-139. doi: 10.2217/fmb-2017-0213.
doi: 10.2217/fmb-2017-0213 pmid: 29302996 |
[28] |
Shao X, Cao G, Chen D, et al. Placental trophoblast syncytialization potentiates macropinocytosis via mTOR signaling to adapt to reduced amino acid supply[J]. Proc Natl Acad Sci U S A, 2021, 118(3):e2017092118. doi: 10.1073/pnas.2017092118.
doi: 10.1073/pnas.2017092118 |
[29] |
Dai Y, Li TH, He X, et al. The Effect and Mechanism of Asymmetric Dimethylarginine Regulating Trophoblastic Autophagy on Fetal Growth Restriction[J]. Reprod Sci, 2021, 28(7):2012-2022. doi: 10.1007/s43032-020-00442-w.
doi: 10.1007/s43032-020-00442-w pmid: 33428125 |
[30] |
Xu YY, Liu Y, Cui L, et al. Hypoxic effects on the mitochondrial content and functions of the placenta in fetal growth restriction[J]. Placenta, 2021, 114:100-107. doi: 10.1016/j.placenta.2021.09.003.
doi: 10.1016/j.placenta.2021.09.003 |
[31] |
Bartho LA, O′Callaghan JL, Fisher JJ, et al. Analysis of mitochondrial regulatory transcripts in publicly available datasets with validation in placentae from pre-term, post-term and fetal growth restriction pregnancies[J]. Placenta, 2021, 112:162-171. doi: 10.1016/j.placenta.2021.07.303.
doi: 10.1016/j.placenta.2021.07.303 pmid: 34364121 |
[32] |
Zhao X, Jiang Y, Jiang T, et al. Physiological and pathological regulation of autophagy in pregnancy[J]. Arch Gynecol Obstet, 2020, 302(2):293-303. doi: 10.1007/s00404-020-05607-1.
doi: 10.1007/s00404-020-05607-1 pmid: 32556514 |
[33] |
Agrawal V, Jaiswal MK, Mallers T, et al. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor[J]. Sci Rep, 2015, 5:9410. doi: 10.1038/srep09410.
doi: 10.1038/srep09410 pmid: 25797357 |
[34] |
Liassides C, Papadopoulos A, Siristatidis C, et al. Single nucleotide polymorphisms of Toll-like receptor-4 and of autophagy-related gene 16 like-1 gene for predisposition of premature delivery: A prospective study[J]. Medicine(Baltimore), 2019, 98(40):e17313. doi: 10.1097/MD.0000000000017313.
doi: 10.1097/MD.0000000000017313 |
[35] |
Avagliano L, Massa V, Zullino S, et al. Inflammation modulates LC3 expression in human preterm delivery[J]. J Matern Fetal Neonatal Med, 2017, 30(6):698-704. doi: 10.1080/14767058.2016.1183630.
doi: 10.1080/14767058.2016.1183630 pmid: 27125211 |
[36] |
Akram KM, Frost LI, Anumba DO. Impaired autophagy with augmented apoptosis in a Th1/Th2-imbalanced placental micromilieu is associated with spontaneous preterm birth[J]. Front Mol Biosci, 2022, 9:897228. doi: 10.3389/fmolb.2022.897228.
doi: 10.3389/fmolb.2022.897228 |
[37] |
Manna S, McCarthy C, McCarthy FP. Placental Ageing in Adverse Pregnancy Outcomes: Telomere Shortening, Cell Senescence, and Mitochondrial Dysfunction[J]. Oxid Med Cell Longev, 2019, 2019:3095383. doi: 10.1155/2019/3095383.
doi: 10.1155/2019/3095383 |
[38] |
Bartho LA, Fisher JJ, Cuffe J, et al. Mitochondrial transformations in the aging human placenta[J]. Am J Physiol Endocrinol Metab, 2020, 319(6):E981-E994. doi: 10.1152/ajpendo.00354.2020.
doi: 10.1152/ajpendo.00354.2020 |
[39] |
Zhang X, Evans TD, Jeong SJ, et al. Classical and alternative roles for autophagy in lipid metabolism[J]. Curr Opin Lipidol, 2018, 29(3):203-211. doi: 10.1097/MOL.0000000000000509.
doi: 10.1097/MOL.0000000000000509 pmid: 29601311 |
[1] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
[2] | HOU Chun-yan, DU Xiu-ping, WANG Hong-hong, HOU Yue-yang. Advances in the Pathogenesis of Fetal Growth Restriction by HMGA2 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 127-131. |
[3] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[4] | YUAN Hai-ning, MU Zhen-ni, ZHANG Jiang-lin, LI Heng-bing, ZHANG Yun-jie, SUN Zhen-gao. Association and Mechanism of Aged Oocytes Quality and Telomerase [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 57-60. |
[5] | WANG Jing, WANG Yong-hong. Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia: A Review [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 88-93. |
[6] | ZHANG Wen, LIU Hui-qiang. The Role of SOCS1 and Exosomal MicroRNA in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 94-98. |
[7] | WANG Yi-dan, WANG Yong-hong. The Role of the Transforming Growth Factor-β Superfamily in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 99-104. |
[8] | FAN Bo-yang, HU Li-yan. Research Advancements on the Pathogenesis and Prediction Approaches of Twin Pregnancies Complicated with Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 611-615. |
[9] | DENG Ling-ling, WU Shao-wen, ZHANG Wei-yuan. Research Progress on Low-Dose Aspirin in the Prevention of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 515-518. |
[10] | ZHANG Qi, WANG Xin, REN Yi, LIU Chao, GAO Hui-jie. Research Progress on SLRPs in Placental Development and Pregnancy-Related Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 525-530. |
[11] | ZHANG Ming, WANG Han-ting, CAO Yuan-yuan, CHEN Lu-jie, WANG Juan. A Case of Early Pregnancy Pulmonary Embolism [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 556-559. |
[12] | DING Yi-ling, LU Di, SONG Dian-rong. Research Progress on the Mechanism of Tumor Resistance in Polyploid Giant Cancer Cells [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 361-365. |
[13] | REN Yi, HU Yu-lian, WANG Xin, ZHANG Qi, LIU Chao, GAO Hui-jie. Clinical Application and Modern Pharmacological Progress of Traditional Chinese Medicine in Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 442-447. |
[14] | ZHAO Li-xia, WANG Xiao-qing. Confused Problem of Magnesium Sulfate in the Treatment of Preeclampsia and Its Adverse Effects [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 448-452. |
[15] | WU Zhi-wei, LIN Xue-yan, ZHANG Xue-qin, YANG Mei-lin. The Prevention and Prediction of Pre-Eclampsia: Recent Advances and the Way Forward [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 312-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||