Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (6): 689-694.doi: 10.12280/gjfckx.20230679
Previous Articles Next Articles
HUANG Xiao-tong, CHENG Xiang-wei, ZHANG Yang()
Received:
2023-09-01
Published:
2023-12-15
Online:
2023-12-13
Contact:
ZHANG Yang
E-mail:851929937@qq.com
HUANG Xiao-tong, CHENG Xiang-wei, ZHANG Yang. Research Progress into the Role of TLR4 at the Maternal-Fetal Interface in Pre-Eclampsia[J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 689-694.
Add to citation manager EndNote|Ris|BibTeX
药物 | 子痫前期细胞/动物模型 | 潜在作用机制 | 参考文献 | |||
---|---|---|---|---|---|---|
阿司匹林 | 大鼠,怀孕第14天尾静脉注射LPS(1 μg/kg) | 抑制胎盘TLR4/MyD88/NF-κB信号通路活化和IL-6、IL-1β、单核细胞趋化蛋白1(MCP-1)等炎症细胞因子的表达 | Sun等[ | |||
二甲双胍 | HTR-8/SVneo滋养细胞系,LPS(200 ng/mL,24 h) | 抑制滋养细胞TLR4/NF-κB/PFKFB3途径,改善糖代谢稳态失衡,促进ATP生成,抑制滋养细胞焦亡 | Zhang等[ | |||
大鼠,怀孕第13~18天腹腔注射LPS(20~70 μg/kg) | 抑制胎盘NF-κB信号通路活化和炎症细胞因子TNF-α、IL-6的生成;增加超氧化物歧化酶(SOD)活性、降低诱导型一氧化氮合酶(iNOS)活性、降低MDA和一氧化氮(NO)水平以减少氧化/硝化应激 | Hu等[ | ||||
普伐他汀 | 大鼠,怀孕第5天尾静脉注射LPS(0.5 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子IL-6、MCP-1的表达,改善子宫螺旋动脉重铸 | Yang等[ | |||
姜黄素 | 大鼠,怀孕第5天尾静脉注射LPS(0.5 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子IL-6、MCP-1的表达,改善子宫螺旋动脉重铸 | Gong等[ | |||
维生素D | 大鼠,怀孕第5天尾静脉注射LPS(0.5 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子TNF-α、γ干扰素(IFN-γ)、IL-6的表达,改善胎盘血管内皮功能,减轻胎盘病理损伤,提高子代的学习和认知能力 | Ma等[ | |||
孕酮+维生素D | 子痫前期患者单核细胞 | 下调子痫前期孕妇单核细胞中 NLRP1/NLRP3炎症小体;抑制TLR4/MyD88/NF-κB 通路活化 | Matias等[ | |||
雌二醇 | 大鼠,怀孕第7~11天腹腔注射L-NAME(50 mg/kg) | 抑制胎盘TLR4/MyD88/IRAK4/TRAF6 信号通路活化;抑制NO生成和iNOS 活性;抑制炎症细胞因子IL-1β、IL-6、IFN-γ和MCP-1 表达;抑制细胞因子CD49d、细胞间黏附分子1(ICAM1)、血管间黏附分子1(VCAM1)、淋巴细胞功能相关抗原-1(LFA-1)、MMP-2、MMP-9 和sFlt-1的表达以保护血管内皮功能 | Lin等[ | |||
催乳素 | 胎盘外植体,LPS(500 ng/mL,24 h) | 抑制胎盘外植体TLR4/NF-κB信号通路活化和IL-6、IL-1β、TNF-α等炎症细胞因子的表达 | Olmos-Ortiz等[ | |||
L-瓜氨酸 | 怀孕的达尔盐敏感性大鼠(DSSR) | 抑制胎盘TLR4/MyD88/NF-κB信号通路活化;促进NO、内皮型一氧化氮合酶(eNOS)、内皮源性超极化因子(EDHF)生成以改善内皮功能;抑制sFlt-1的表达以促进胎盘血管生成;延缓胎盘衰老 | Man等[ | |||
非瑟酮 | 大鼠,怀孕第14天尾静脉注射LPS(1 μg/kg) | 抑制胎盘中的 TLR4/NF-κB通路活化;促进核转录因子红系2相关因子2(Nrf2)/HO-1通路;减少TNF-α、IL-6、IL-1β和MDA的生成;提高SOD和谷胱甘肽含量;降低sFlt-1/胎盘生长因子(PlGF)比值 | Li等[ | |||
丙泊酚 | HTR-8/SVneo滋养细胞系,LPS(100 ng/mL) | 抑制滋养细胞miR-216a-5p/TLR4/MyD88/NF-κB信号通路,改善滋养细胞功能障碍 | Wang等[ | |||
甘草甜素 | 大鼠,怀孕第7~11天腹腔注射L-NAME(50 mg/kg) | 抑制胎盘TLR4和高迁移率族蛋白B1表达,抑制炎症细胞因子TNF-α、iNOS、IL-1和IL-6的表达 | Liu等[ | |||
夹竹桃素 | 大鼠,怀孕第13~19天腹腔注射L-NAME(200 mg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化;降低血清和胎盘炎症细胞因子IL-6水平;改善血清和胎盘中sFlt-1和PlGF的失衡 | Sha等[ | |||
黄芪甲苷 | 大鼠,怀孕第14天尾静脉注射LPS(1 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子IL-6、IL-1β的表达;改善胎盘中sFlt-1和PlGF/血管内皮生长因子(VEGF)的失衡 | Tuerxun等[ | |||
人参皂苷Rg2 | 大鼠,怀孕第8~19天口服管饲L-NAME(50 mg/kg) | 抑制大脑TLR4/MyD88/NF-κB信号通路活化和炎症细胞因子 IL-1β、TNF-α表达 | Cai等[ | |||
天麻素 | 大鼠,怀孕第13~21天腹腔注射L-NAME(100 mg/kg);HTR-8/SVneo滋养细胞系,缺氧处理 | 抑制胎盘和滋养细胞的TLR4/MyD88/NF-κB信号通路活化;改善胎盘细胞和滋养细胞的凋亡 | Mei等[ |
药物 | 子痫前期细胞/动物模型 | 潜在作用机制 | 参考文献 | |||
---|---|---|---|---|---|---|
阿司匹林 | 大鼠,怀孕第14天尾静脉注射LPS(1 μg/kg) | 抑制胎盘TLR4/MyD88/NF-κB信号通路活化和IL-6、IL-1β、单核细胞趋化蛋白1(MCP-1)等炎症细胞因子的表达 | Sun等[ | |||
二甲双胍 | HTR-8/SVneo滋养细胞系,LPS(200 ng/mL,24 h) | 抑制滋养细胞TLR4/NF-κB/PFKFB3途径,改善糖代谢稳态失衡,促进ATP生成,抑制滋养细胞焦亡 | Zhang等[ | |||
大鼠,怀孕第13~18天腹腔注射LPS(20~70 μg/kg) | 抑制胎盘NF-κB信号通路活化和炎症细胞因子TNF-α、IL-6的生成;增加超氧化物歧化酶(SOD)活性、降低诱导型一氧化氮合酶(iNOS)活性、降低MDA和一氧化氮(NO)水平以减少氧化/硝化应激 | Hu等[ | ||||
普伐他汀 | 大鼠,怀孕第5天尾静脉注射LPS(0.5 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子IL-6、MCP-1的表达,改善子宫螺旋动脉重铸 | Yang等[ | |||
姜黄素 | 大鼠,怀孕第5天尾静脉注射LPS(0.5 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子IL-6、MCP-1的表达,改善子宫螺旋动脉重铸 | Gong等[ | |||
维生素D | 大鼠,怀孕第5天尾静脉注射LPS(0.5 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子TNF-α、γ干扰素(IFN-γ)、IL-6的表达,改善胎盘血管内皮功能,减轻胎盘病理损伤,提高子代的学习和认知能力 | Ma等[ | |||
孕酮+维生素D | 子痫前期患者单核细胞 | 下调子痫前期孕妇单核细胞中 NLRP1/NLRP3炎症小体;抑制TLR4/MyD88/NF-κB 通路活化 | Matias等[ | |||
雌二醇 | 大鼠,怀孕第7~11天腹腔注射L-NAME(50 mg/kg) | 抑制胎盘TLR4/MyD88/IRAK4/TRAF6 信号通路活化;抑制NO生成和iNOS 活性;抑制炎症细胞因子IL-1β、IL-6、IFN-γ和MCP-1 表达;抑制细胞因子CD49d、细胞间黏附分子1(ICAM1)、血管间黏附分子1(VCAM1)、淋巴细胞功能相关抗原-1(LFA-1)、MMP-2、MMP-9 和sFlt-1的表达以保护血管内皮功能 | Lin等[ | |||
催乳素 | 胎盘外植体,LPS(500 ng/mL,24 h) | 抑制胎盘外植体TLR4/NF-κB信号通路活化和IL-6、IL-1β、TNF-α等炎症细胞因子的表达 | Olmos-Ortiz等[ | |||
L-瓜氨酸 | 怀孕的达尔盐敏感性大鼠(DSSR) | 抑制胎盘TLR4/MyD88/NF-κB信号通路活化;促进NO、内皮型一氧化氮合酶(eNOS)、内皮源性超极化因子(EDHF)生成以改善内皮功能;抑制sFlt-1的表达以促进胎盘血管生成;延缓胎盘衰老 | Man等[ | |||
非瑟酮 | 大鼠,怀孕第14天尾静脉注射LPS(1 μg/kg) | 抑制胎盘中的 TLR4/NF-κB通路活化;促进核转录因子红系2相关因子2(Nrf2)/HO-1通路;减少TNF-α、IL-6、IL-1β和MDA的生成;提高SOD和谷胱甘肽含量;降低sFlt-1/胎盘生长因子(PlGF)比值 | Li等[ | |||
丙泊酚 | HTR-8/SVneo滋养细胞系,LPS(100 ng/mL) | 抑制滋养细胞miR-216a-5p/TLR4/MyD88/NF-κB信号通路,改善滋养细胞功能障碍 | Wang等[ | |||
甘草甜素 | 大鼠,怀孕第7~11天腹腔注射L-NAME(50 mg/kg) | 抑制胎盘TLR4和高迁移率族蛋白B1表达,抑制炎症细胞因子TNF-α、iNOS、IL-1和IL-6的表达 | Liu等[ | |||
夹竹桃素 | 大鼠,怀孕第13~19天腹腔注射L-NAME(200 mg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化;降低血清和胎盘炎症细胞因子IL-6水平;改善血清和胎盘中sFlt-1和PlGF的失衡 | Sha等[ | |||
黄芪甲苷 | 大鼠,怀孕第14天尾静脉注射LPS(1 μg/kg) | 抑制胎盘TLR4/NF-κB信号通路活化和炎症细胞因子IL-6、IL-1β的表达;改善胎盘中sFlt-1和PlGF/血管内皮生长因子(VEGF)的失衡 | Tuerxun等[ | |||
人参皂苷Rg2 | 大鼠,怀孕第8~19天口服管饲L-NAME(50 mg/kg) | 抑制大脑TLR4/MyD88/NF-κB信号通路活化和炎症细胞因子 IL-1β、TNF-α表达 | Cai等[ | |||
天麻素 | 大鼠,怀孕第13~21天腹腔注射L-NAME(100 mg/kg);HTR-8/SVneo滋养细胞系,缺氧处理 | 抑制胎盘和滋养细胞的TLR4/MyD88/NF-κB信号通路活化;改善胎盘细胞和滋养细胞的凋亡 | Mei等[ |
[1] | Zhang Y, Zhong Y, Zou L, et al. Significance of Placental Mesenchymal Stem Cell in Placenta Development and Implications for Preeclampsia[J]. Front Pharmacol, 2022, 13:896531. doi: 10.3389/fphar.2022.896531. |
[2] |
Firmal P, Shah VK, Chattopadhyay S. Insight Into TLR4-Mediated Immunomodulation in Normal Pregnancy and Related Disorders[J]. Front Immunol, 2020, 11:807. doi: 10.3389/fimmu.2020.00807.
pmid: 32508811 |
[3] | El-Khalik S, Ibrahim RR, Ghafar M, et al. Novel insights into the SLC7A11-mediated ferroptosis signaling pathways in preeclampsia patients: identifying pannexin 1 and toll-like receptor 4 as innovative prospective diagnostic biomarkers[J]. J Assist Reprod Genet, 2022, 39(5):1115-1124. doi: 10.1007/s10815-022-02443-x. |
[4] | Zhong Y, Zhang Y, Liu W, et al. TLR4 Modulates Senescence and Paracrine Action in Placental Mesenchymal Stem Cells via Inhibiting Hedgehog Signaling Pathway in Preeclampsia[J]. Oxid Med Cell Longev, 2022, 2022:7202837. doi: 10.1155/2022/7202837. |
[5] | Zhang Y, Liu W, Zhong Y, et al. Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF-κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia[J]. Oxid Med Cell Longev, 2021, 2021:1806344. doi: 10.1155/2021/1806344. |
[6] |
Zhang Y, Liu W, Wu M, et al. PFKFB3 regulates lipopolysaccharide-induced excessive inflammation and cellular dysfunction in HTR-8/Svneo cells: Implications for the role of PFKFB3 in preeclampsia[J]. Placenta, 2021, 106:67-78. doi: 10.1016/j.placenta.2021.02.014.
pmid: 33684599 |
[7] | Lin P, Lai X, Wu L, et al. Network analysis reveals important genes in human placenta[J]. J Obstet Gynaecol Res, 2021, 47(8):2607-2615. doi: 10.1111/jog.14820. |
[8] |
Schjenken JE, Glynn DJ, Sharkey DJ, et al. TLR4 Signaling Is a Major Mediator of the Female Tract Response to Seminal Fluid in Mice[J]. Biol Reprod, 2015, 93(3):68. doi: 10.1095/biolreprod.114.125740.
pmid: 26157066 |
[9] |
Schjenken JE, Sharkey DJ, Green ES, et al. Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice[J]. Commun Biol, 2021, 4(1):572. doi: 10.1038/s42003-021-02038-9.
pmid: 33990675 |
[10] |
Chan HY, Moldenhauer LM, Groome HM, et al. Toll-like receptor-4 null mutation causes fetal loss and fetal growth restriction associated with impaired maternal immune tolerance in mice[J]. Sci Rep, 2021, 11(1):16569. doi: 10.1038/s41598-021-95213-1.
pmid: 34400677 |
[11] |
Hosseini S, Hosseini S, Salehi M. Upregulation of Toll-like receptor 4 through anti-miR-Let-7a enhances blastocyst attachment to endometrial cells in mice[J]. J Cell Physiol, 2020, 235(12):9752-9762. doi: 10.1002/jcp.29787.
pmid: 32415675 |
[12] | Beijar EC, Mallard C, Powell TL. Expression and subcellular localization of TLR-4 in term and first trimester human placenta[J]. Placenta, 2006, 27(2/3):322-326. doi: 10.1016/j.placenta.2004.12.012. |
[13] |
Wahid HH, Dorian CL, Chin PY, et al. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice[J]. Endocrinology, 2015, 156(10):3828-3841. doi: 10.1210/EN.2015-1089.
pmid: 26151355 |
[14] | He L, Song Q, Hu J, et al. Expression of HMGB1-TLR4 in Placentas from Preeclamptic Pregnancies and Its Effect on Proliferation and Invasion of HTR-8/SVneo Cells[J]. Gynecol Obstet Invest, 2023, 88(3):159-167. doi: 10.1159/000530006. |
[15] | Lin YK, Zhu P, Wang WS, et al. Serum amyloid A, a host-derived DAMP in pregnancy?[J]. Front Immunol, 2022, 13:978929. doi: 10.3389/fimmu.2022.978929. |
[16] | Tang R, Xiao G, Jian Y, et al. The Gut Microbiota Dysbiosis in Preeclampsia Contributed to Trophoblast Cell Proliferation, Invasion, and Migration via lncRNA BC030099/NF-κB Pathway[J]. Mediators Inflamm, 2022, 2022:6367264. doi: 10.1155/2022/6367264. |
[17] |
Liu F, Yang X, Xing J, et al. Glycyrrhizin potentially suppresses the inflammatory response in preeclampsia rat model[J]. Pregnancy Hypertens, 2021, 23:34-40. doi: 10.1016/j.preghy.2020.10.007.
pmid: 33189014 |
[18] | Li Y, Liu Y, Chen J, et al. Protective effect of Fisetin on the lipopolysaccharide-induced preeclampsia-like rats[J]. Hypertens Pregnancy, 2022, 41(1):23-30. doi: 10.1080/10641955.2021.2013874. |
[19] | Broekhuizen M, Hitzerd E, van den Bosch T, et al. The Placental Innate Immune System Is Altered in Early-Onset Preeclampsia, but Not in Late-Onset Preeclampsia[J]. Front Immunol, 2021, 12:780043. doi: 10.3389/fimmu.2021.780043. |
[20] |
Vamvakopoulou DN, Satra M, Fegga A, et al. Association of maternal Toll-like receptor-4 alleles with susceptibility to early-onset preeclampsia in central Greece[J]. Pregnancy Hypertens, 2019, 18:103-107. doi: 10.1016/j.preghy.2019.09.007.
pmid: 31586781 |
[21] | Sun M, Jiang H, Meng T, et al. Association Between TLR4 Gene Polymorphisms and Risk of Preeclampsia: Systematic Review and Meta-Analysis[J]. Med Sci Monit, 2021, 27:e930438. doi: 10.12659/MSM.930438. |
[22] |
Tulina NM, Brown AG, Barila GO, et al. The Absence of TLR4 Prevents Fetal Brain Injury in the Setting of Intrauterine Inflammation[J]. Reprod Sci, 2019, 26(8):1082-1093. doi: 10.1177/1933719118805859.
pmid: 30463495 |
[23] | Lee MS. Treatment of autoimmune diabetes by inhibiting the initial event[J]. Immune Netw, 2013, 13(5):194-198. doi: 10.4110/in.2013.13.5.194. |
[24] | Han VX, Jones HF, Patel S, et al. Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review[J]. Brain Behav Immun, 2022, 99:91-105. doi: 10.1016/j.bbi.2021.09.009. |
[25] | Sun J, Zhang H, Liu F, et al. Ameliorative effects of aspirin against lipopolysaccharide-induced preeclampsia-like symptoms in rats by inhibiting the pro-inflammatory pathway[J]. Can J Physiol Pharmacol, 2018, 96(11):1084-1091. doi: 10.1139/cjpp-2018-0087. |
[26] | Hu J, Zhang J, Zhu B. Protective effect of metformin on a rat model of lipopolysaccharide-induced preeclampsia[J]. Fundam Clin Pharmacol, 2019, 33(6):649-658. doi: 10.1111/fcp.12501. |
[27] | Yang MY, Diao ZY, Wang ZY, et al. Pravastatin alleviates lipopolysaccharide-induced placental TLR4 over-activation and promotes uterine arteriole remodeling without impairing rat fetal development[J]. J Biomed Res, 2018, 32(4):288-297. doi: 10.7555/JBR.32.20180039. |
[28] |
Gong P, Liu M, Hong G, et al. Curcumin improves LPS-induced preeclampsia-like phenotype in rat by inhibiting the TLR4 signaling pathway[J]. Placenta, 2016, 41:45-52. doi: 10.1016/j.placenta.2016.03.002.
pmid: 27208407 |
[29] | Ma Y, Yang Y, Lv M, et al. 1,25(OH)2D3 alleviates LPS-induced preeclampsia-like rats impairment in the protective effect by TLR4/NF-κB pathway[J]. Placenta, 2022, 130:34-41. doi: 10.1016/j.placenta.2022.10.012. |
[30] | Matias ML, Romao-Veiga M, Ribeiro VR, et al. Progesterone and vitamin D downregulate the activation of the NLRP1/NLRP3 inflammasomes and TLR4-MyD88-NF-κB pathway in monocytes from pregnant women with preeclampsia[J]. J Reprod Immunol, 2021, 144:103286. doi: 10.1016/j.jri.2021.103286. |
[31] | Lin ZH, Jin J, Shan XY. The effects of estradiol on inflammatory and endothelial dysfunction in rats with preeclampsia[J]. Int J Mol Med, 2020, 45(3):825-835. doi: 10.3892/ijmm.2020.4465. |
[32] |
Olmos-Ortiz A, Déciga-García M, Preciado-Martínez E, et al. Prolactin decreases LPS-induced inflammatory cytokines by inhibiting TLR-4/NFκB signaling in the human placenta[J]. Mol Hum Reprod, 2019, 25(10):660-667. doi: 10.1093/molehr/gaz038.
pmid: 31263869 |
[33] | Man A, Zhou Y, Lam U, et al. l-Citrulline ameliorates pathophysiology in a rat model of superimposed preeclampsia[J]. Br J Pharmacol, 2022, 179(12):3007-3023. doi: 10.1111/bph.15783. |
[34] |
Wang Y, Lin C, Wang J, et al. Propofol rescues LPS-induced toxicity in HRT-8/SVneo cells via miR-216a-5p/TLR4 axis[J]. Arch Gynecol Obstet, 2022, 305(4):1055-1067. doi: 10.1007/s00404-021-06316-z.
pmid: 34982175 |
[35] |
Sha H, Ma Y, Tong Y, et al. Apocynin inhibits placental TLR4/NF-κB signaling pathway and ameliorates preeclampsia-like symptoms in rats[J]. Pregnancy Hypertens, 2020, 22:210-215. doi: 10.1016/j.preghy.2020.10.006.
pmid: 33099123 |
[36] | Tuerxun D, Aierken R, Zhang YM, et al. Astragaloside Ⅳ alleviates lipopolysaccharide-induced preeclampsia-like phenotypes via suppressing the inflammatory responses[J]. Kaohsiung J Med Sci, 2021, 37(3):236-244. doi: 10.1002/kjm2.12313. |
[37] |
Cai L, Hu F, Fu W, et al. Ginsenoside Rg2 Ameliorates Brain Injury After Intracerebral Hemorrhage in a Rat Model of Preeclampsia[J]. Reprod Sci, 2021, 28(12):3431-3439. doi: 10.1007/s43032-021-00692-2.
pmid: 34270001 |
[38] |
Mei Z, Huang B, Qian X, et al. Gastrodin improves preeclampsia-induced cell apoptosis by regulation of TLR4/NF-κB in rats[J]. Food Sci Nutr, 2020, 8(2):820-829. doi: 10.1002/fsn3.1342.
pmid: 32148791 |
[1] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
[2] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[3] | CHEN Shu-lin, QIAO Qiao. Relationship between Vaginal Epithelial Injury Repair and Microecological Environment [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 52-56. |
[4] | WANG Jing, WANG Yong-hong. Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia: A Review [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 88-93. |
[5] | ZHANG Wen, LIU Hui-qiang. The Role of SOCS1 and Exosomal MicroRNA in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 94-98. |
[6] | WANG Yi-dan, WANG Yong-hong. The Role of the Transforming Growth Factor-β Superfamily in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 99-104. |
[7] | FAN Bo-yang, HU Li-yan. Research Advancements on the Pathogenesis and Prediction Approaches of Twin Pregnancies Complicated with Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 611-615. |
[8] | DENG Ling-ling, WU Shao-wen, ZHANG Wei-yuan. Research Progress on Low-Dose Aspirin in the Prevention of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 515-518. |
[9] | ZHANG Qi, WANG Xin, REN Yi, LIU Chao, GAO Hui-jie. Research Progress on SLRPs in Placental Development and Pregnancy-Related Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 525-530. |
[10] | REN Yi, HU Yu-lian, WANG Xin, ZHANG Qi, LIU Chao, GAO Hui-jie. Clinical Application and Modern Pharmacological Progress of Traditional Chinese Medicine in Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 442-447. |
[11] | ZHAO Li-xia, WANG Xiao-qing. Confused Problem of Magnesium Sulfate in the Treatment of Preeclampsia and Its Adverse Effects [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 448-452. |
[12] | WU Zhi-wei, LIN Xue-yan, ZHANG Xue-qin, YANG Mei-lin. The Prevention and Prediction of Pre-Eclampsia: Recent Advances and the Way Forward [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 312-316. |
[13] | ZHANG Chun-shuang, DONG Xiao-zhen, ZHOU Chang-rong, WANG Yi-shan, LI He-zhou. Intrauterine Treatment of Fetal Hydrothorax Combined with Hydrops Complicating Mirror Syndrome:A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 357-360. |
[14] | PENG Lan, BAI Ting, ZHOU Li-ping, YU Yan-xia. The Relationship between Biological Rhythm and Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 157-160. |
[15] | CHEN Jia-ying, FENG Ya-ling. Research Advances on Protein Post-Translational Modification in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 1-4. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||