Journal of International Obstetrics and Gynecology ›› 2025, Vol. 52 ›› Issue (1): 99-104.doi: 10.12280/gjfckx.20240917
• Obstetric Physiology & Obstetric Disease:Review • Previous Articles Next Articles
Received:
2024-10-11
Published:
2025-02-15
Online:
2025-02-14
Contact:
WANG Yong-hong, E-mail: wangyh19672000@126.com
WANG Yi-dan, WANG Yong-hong. The Role of the Transforming Growth Factor-β Superfamily in the Pathogenesis of Preeclampsia[J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 99-104.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Gumusoglu S, Scroggins S, Vignato J, et al. The Serotonin-Immune Axis in Preeclampsia[J]. Curr Hypertens Rep, 2021, 23(7):37. doi: 10.1007/s11906-021-01155-4.
pmid: 34351543 |
[2] | Hong K, Kim SH, Cha DH, et al. Defective Uteroplacental Vascular Remodeling in Preeclampsia: Key Molecular Factors Leading to Long Term Cardiovascular Disease[J]. Int J Mol Sci, 2021, 22(20):11202. doi: 10.3390/ijms222011202. |
[3] | Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer′s pathology and cytoskeletal reorganization: a specialized Tau perspective[J]. J Neuroinflammation, 2023, 20(1):72. doi: 10.1186/s12974-023-02751-8. |
[4] | Abdullah A, Herdenberg C, Hedman H. Ligand-specific regulation of transforming growth factor beta superfamily factors by leucine-rich repeats and immunoglobulin-like domains proteins[J]. PLoS One, 2023, 18(8):e0289726. doi: 10.1371/journal.pone.0289726. |
[5] | Li Y, Yan J, Chang HM, et al. Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion[J]. Trends Endocrinol Metab, 2021, 32(3):170-189. doi: 10.1016/j.tem.2020.12.005. |
[6] | Ilhan M, Hastar N, Kampfrath B, et al. BMP Stimulation Differentially Affects Phosphorylation and Protein Stability of β-Catenin in Breast Cancer Cell Lines[J]. Int J Mol Sci, 2024, 25(9):4593. doi: 10.3390/ijms25094593. |
[7] |
Monsivais D, Nagashima T, Prunskaite-Hyyryläinen R, et al. Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis[J]. Nat Commun, 2021, 12(1):3386. doi: 10.1038/s41467-021-23571-5.
pmid: 34099644 |
[8] | You J, Wang W, Chang HM, et al. The BMP2 Signaling Axis Promotes Invasive Differentiation of Human Trophoblasts[J]. Front Cell Dev Biol, 2021,9:607332. doi: 10.3389/fcell.2021.607332. |
[9] | Yi Y, Zhu H, Klausen C, et al. Dysregulated BMP2 in the Placenta May Contribute to Early-Onset Preeclampsia by Regulating Human Trophoblast Expression of Extracellular Matrix and Adhesion Molecules[J]. Front Cell Dev Biol, 2021,9:768669. doi: 10.3389/fcell.2021.768669. |
[10] | Deng J, Zhao HJ, Zhong Y, et al. H3K27me3-modulated Hofbauer cell BMP2 signalling enhancement compensates for shallow trophoblast invasion in preeclampsia[J]. EBioMedicine, 2023,93:104664. doi: 10.1016/j.ebiom.2023.104664. |
[11] |
Deer E, Herrock O, Campbell N, et al. The role of immune cells and mediators in preeclampsia[J]. Nat Rev Nephrol, 2023, 19(4):257-270. doi: 10.1038/s41581-022-00670-0.
pmid: 36635411 |
[12] | Liu X, Fei H, Yang C, et al. Trophoblast-Derived Extracellular Vesicles Promote Preeclampsia by Regulating Macrophage Polarization[J]. Hypertension, 2022, 79(10):2274-2287. doi: 10.1161/HYPERTENSIONAHA.122.19244. |
[13] |
Wang J, Xue Y, Wang Y, et al. BMP-2 functional polypeptides relieve osteolysis via bi-regulating bone formation and resorption coupled with macrophage polarization[J]. NPJ Regen Med, 2023, 8(1):6. doi: 10.1038/s41536-023-00279-2.
pmid: 36759627 |
[14] | Shi XF, Zhang Z, Wu HY, et al. Lysine (K)-specific demethylase 5C regulates the incidence of severe preeclampsia by adjusting the expression of bone morphogenetic protein-7[J]. Bioengineered, 2022, 13(4):8538-8547. doi: 10.1080/21655979.2022.2051840. |
[15] | Desroches-Castan A, Tillet E, Bouvard C, et al. BMP9 and BMP10: Two close vascular quiescence partners that stand out[J]. Dev Dyn, 2022, 251(1):178-197. doi: 10.1002/dvdy.395. |
[16] |
Yang X, Ren L, Chen X, et al. BMP9 maintains the phenotype of HTR-8/Svneo trophoblast cells by activating the SDF1/CXCR4 pathway[J]. BMC Mol Cell Biol, 2023, 24(1):24. doi: 10.1186/s12860-023-00487-0.
pmid: 37550619 |
[17] | Machelak W, Szczepaniak A, Jacenik D, et al. The role of GDF11 during inflammation - An overview[J]. Life Sci, 2023,322:121650. doi: 10.1016/j.lfs.2023.121650. |
[18] | Wu Z, Zhang Q, Wang H, et al. Growth differentiation factor-11 upregulates matrix metalloproteinase 2 expression by inducing Snail in human extravillous trophoblast cells[J]. Mol Cell Endocrinol, 2024,585:112190. doi: 10.1016/j.mce.2024.112190. |
[19] |
Wu Z, Fang L, Yang S, et al. GDF-11 promotes human trophoblast cell invasion by increasing ID2-mediated MMP2 expression[J]. Cell Commun Signal, 2022, 20(1):89. doi: 10.1186/s12964-022-00899-z.
pmid: 35705978 |
[20] |
Li H, Zhou L, Zhang C, et al. Follistatin dysregulation impaired trophoblast biological functions by GDF11-Smad2/3 axis in preeclampsia placentas[J]. Placenta, 2022, 121:145-154. doi: 10.1016/j.placenta.2022.03.015.
pmid: 35339026 |
[21] | Shu C, Han S, Hu C, et al. Integrin β1 regulates proliferation, apoptosis, and migration of trophoblasts through activation of phosphoinositide 3 kinase/protein kinase B signaling[J]. J Obstet Gynaecol Res, 2021, 47(7):2406-2416. doi: 10.1111/jog.14782. |
[22] |
Yang Y, Ding M, Yin H, et al. GALNT12 suppresses the bone-specific prostate cancer metastasis by activating BMP pathway via the O-glycosylation of BMPR1A[J]. Int J Biol Sci, 2024, 20(4):1297-1313. doi: 10.7150/ijbs.91925.
pmid: 38385080 |
[23] |
Al Tarrass M, Belmudes L, Koça D, et al. Large-scale phosphoproteomics reveals activation of the MAPK/GADD45β/P38 axis and cell cycle inhibition in response to BMP9 and BMP10 stimulation in endothelial cells[J]. Cell Commun Signal, 2024, 22(1):158. doi: 10.1186/s12964-024-01486-0.
pmid: 38439036 |
[24] | Yang S, Feng T, Ma C, et al. Early pregnancy human decidua gamma/delta T cells exhibit tissue resident and specific functional characteristics[J]. Mol Hum Reprod, 2022, 28(8):gaac023. doi: 10.1093/molehr/gaac023. |
[25] | Siddiqui JA, Pothuraju R, Khan P, et al. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia[J]. Cytokine Growth Factor Rev, 2022, 64:71-83. doi: 10.1016/j.cytogfr.2021.11.002. |
[26] | McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628):83-90. doi: 10.1038/387083a0. |
[27] | Bai L, Wang W, Xiang Y, et al. Aberrant elevation of GDF8 impairs granulosa cell glucose metabolism via upregulating SERPINE1 expression in patients with PCOS[J]. Mol Ther Nucleic Acids, 2021, 23:294-309. doi: 10.1016/j.omtn.2020.11.005. |
[28] | Fang L, Wang Z, Wu Z, et al. GDF-8 stimulates trophoblast cell invasion by inducing ALK5-SMAD2/3-mediated MMP2 expression[J]. Reproduction, 2021, 162(5):331-338. doi: 10.1530/REP-21-0197. |
[29] | AbdelHafez FF, Klausen C, Zhu H, et al. Growth differentiation factor myostatin regulates epithelial-mesenchymal transition genes and enhances invasion by increasing serine protease inhibitors E1 and E2 in human trophoblast cells[J]. FASEB J, 2023, 37(10):e23204. doi: 10.1096/fj.202300740R. |
[30] |
Chen J, Song T, Yang S, et al. Snail mediates GDF-8-stimulated human extravillous trophoblast cell invasion by upregulating MMP2 expression[J]. Cell Commun Signal, 2023, 21(1):93. doi: 10.1186/s12964-023-01107-2.
pmid: 37143106 |
[31] | Cruickshank T, MacDonald TM, Walker SP, et al. Circulating Growth Differentiation Factor 15 Is Increased Preceding Preeclampsia Diagnosis: Implications as a Disease Biomarker[J]. J Am Heart Assoc, 2021, 10(16):e020302. doi: 10.1161/JAHA.120.020302. |
[32] | Zeng YT, Liu WF, Zheng PS, et al. GDF15 deficiency hinders human trophoblast invasion to mediate pregnancy loss through downregulating Smad1/5 phosphorylation[J]. iScience, 2023, 26(10):107902. doi: 10.1016/j.isci.2023.107902. |
[33] | Xu S, Lu Y, Yao M, et al. Association between plasma growth differentiation factor 15 levels and pre-eclampsia in China[J]. Chronic Dis Transl Med, 2024, 10(2):140-145. doi: 10.1002/cdt3.126. |
[34] |
Gil-Acevedo LA, Ceballos G, Torres-Ramos YD. Foetal lipoprotein oxidation and preeclampsia[J]. Lipids Health Dis, 2022, 21(1):51. doi: 10.1186/s12944-022-01663-5.
pmid: 35658865 |
[35] | Li Y, Zhao X, He B, et al. Autophagy Activation by Hypoxia Regulates Angiogenesis and Apoptosis in Oxidized Low-Density Lipoprotein-Induced Preeclampsia[J]. Front Mol Biosci, 2021,8:709751. doi: 10.3389/fmolb.2021.709751. |
[36] | Liuize Abramaviciute A, Mongirdiene A. TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis[J]. Int J Mol Sci, 2024,25(4): 2104. doi: 10.3390/ijms25042104. |
[37] | Zhang X, Wang S, Chong N, et al. GDF-15 alleviates diabetic nephropathy via inhibiting NEDD4L-mediated IKK/NF-κB signalling pathways[J]. Int Immunopharmacol, 2024,128:111427. doi: 10.1016/ j.intimp.2023.111427. |
[38] |
Lan X, Guo L, Hu C, et al. Fibronectin mediates activin A-promoted human trophoblast migration and acquisition of endothelial-like phenotype[J]. Cell Commun Signal, 2024, 22(1):61. doi: 10.1186/s12964-023-01463-z.
pmid: 38263146 |
[39] | Yun SO, Kim YI, Ahn HJ, et al. Activin suppresses the expression of inflammatory genes and signaling proteins in human leukemia monocytic THP-1 cells[J]. Cell Mol Biol(Noisy-le-grand), 2023, 69(11):36-40. doi: 10.14715/cmb/2023.69.11.6. |
[40] | Bakrania BA, Palei AC, Bhattarai U, et al. Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction[J]. Cells, 2022, 11(4):742. doi: 10.3390/cells11040742. |
[41] | Barber C, Yap Y, Hannan NJ, et al. Activin A causes endothelial dysfunction of mouse aorta and human aortic cells[J]. Reproduction, 2022, 163(3):145-155. doi: 10.1530/REP-21-0368. |
[42] | Lim R, Acharya R, Delpachitra P, et al. Activin and NADPH-oxidase in preeclampsia: insights from in vitro and murine studies[J]. Am J Obstet Gynecol, 2015, 212(1):86.e1-e12. doi: 10.1016/j.ajog.2014.07.021. |
[43] | Walton KL, Goney MP, Peppas Z, et al. Inhibin Inactivation in Female Mice Leads to Elevated FSH Levels, Ovarian Overstimulation, and Pregnancy Loss[J]. Endocrinology, 2022, 163(4):bqac025. doi: 10.1210/endocr/bqac025. |
[44] | Wang Y, Li B, Zhao Y. Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies[J]. Front Immunol, 2022,13:883404. doi: 10.3389/fimmu.2022.883404. |
[45] | Hu P, Luo S, Qu G, et al. Identification and validation of feature genes associated with M1 macrophages in preeclampsia[J]. Aging(Albany NY), 2023, 15(23):13822-13839. doi: 10.18632/aging.205264. |
[46] |
Keikkala E, Forstén J, Ritvos O, et al. Serum Inhibin-A and PAPP-A2 in the prediction of pre-eclampsia during the first and second trimesters in high-risk women[J]. Pregnancy Hypertens, 2021, 25:116-122. doi: 10.1016/j.preghy.2021.05.024.
pmid: 34116346 |
[1] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
[2] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[3] | WANG Jing, WANG Yong-hong. Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia: A Review [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 88-93. |
[4] | ZHANG Wen, LIU Hui-qiang. The Role of SOCS1 and Exosomal MicroRNA in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 94-98. |
[5] | FAN Bo-yang, HU Li-yan. Research Advancements on the Pathogenesis and Prediction Approaches of Twin Pregnancies Complicated with Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 611-615. |
[6] | DENG Ling-ling, WU Shao-wen, ZHANG Wei-yuan. Research Progress on Low-Dose Aspirin in the Prevention of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 515-518. |
[7] | ZHANG Qi, WANG Xin, REN Yi, LIU Chao, GAO Hui-jie. Research Progress on SLRPs in Placental Development and Pregnancy-Related Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 525-530. |
[8] | REN Yi, HU Yu-lian, WANG Xin, ZHANG Qi, LIU Chao, GAO Hui-jie. Clinical Application and Modern Pharmacological Progress of Traditional Chinese Medicine in Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 442-447. |
[9] | ZHAO Li-xia, WANG Xiao-qing. Confused Problem of Magnesium Sulfate in the Treatment of Preeclampsia and Its Adverse Effects [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 448-452. |
[10] | WU Zhi-wei, LIN Xue-yan, ZHANG Xue-qin, YANG Mei-lin. The Prevention and Prediction of Pre-Eclampsia: Recent Advances and the Way Forward [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 312-316. |
[11] | ZHANG Chun-shuang, DONG Xiao-zhen, ZHOU Chang-rong, WANG Yi-shan, LI He-zhou. Intrauterine Treatment of Fetal Hydrothorax Combined with Hydrops Complicating Mirror Syndrome:A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 357-360. |
[12] | PENG Lan, BAI Ting, ZHOU Li-ping, YU Yan-xia. The Relationship between Biological Rhythm and Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 157-160. |
[13] | CHEN Jia-ying, FENG Ya-ling. Research Advances on Protein Post-Translational Modification in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 1-4. |
[14] | MENG Fei, LIU Hui-qiang. The Role of Exosomes from Different Sources in Pathogenesis and Treatment of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 10-14. |
[15] | ZHANG Ting, CHEN Zhen-yu, LIU Sen, ZHANG Xiao-hong, LI Ya-meng, LI Cai-xi. Construction and Validation of A Predictive Model for Adverse Pregnancy Outcomes in Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 21-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||