Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (3): 325-339.doi: 10.12280/gjfckx.20210881
• Obstetric Physiology & Obstetric Disease:Review • Previous Articles Next Articles
JIN Jie, XIONG Wen-qian, LIU Yi()
Received:
2021-09-22
Published:
2022-06-15
Online:
2022-06-23
Contact:
LIU Yi
E-mail:liqun94@163.com
JIN Jie, XIONG Wen-qian, LIU Yi. Epithelial-Mesenchymal Transition and Decidualization in Endometrial Receptivity[J]. Journal of International Obstetrics and Gynecology, 2022, 49(3): 325-339.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Adiguzel D, Celik-Ozenci C. FoxO1 is a cell-specific core transcription factor for endometrial remodeling and homeostasis during menstrual cycle and early pregnancy[J]. Hum Reprod Update, 2021, 27(3):570-583. doi: 10.1093/humupd/dmaa060.
doi: 10.1093/humupd/dmaa060 pmid: 33434267 |
[2] |
Liang J, Cao D, Zhang X, et al. miR-192-5p suppresses uterine receptivity formation through impeding epithelial transformation during embryo implantation[J]. Theriogenology, 2020, 157:360-371. doi: 10.1016/j.theriogenology.2020.08.009.
doi: 10.1016/j.theriogenology.2020.08.009 |
[3] |
Fullerton PT Jr, Monsivais D, Kommagani R, et al. Follistatin is critical for mouse uterine receptivity and decidualization[J]. Proc Natl Acad Sci U S A, 2017, 114(24):E4772-E4781. doi: 10.1073/pnas.1620903114.
doi: 10.1073/pnas.1620903114 |
[4] |
Kasvandik S, Saarma M, Kaart T, et al. Uterine Fluid Proteins for Minimally Invasive Assessment of Endometrial Receptivity[J]. J Clin Endocrinol Metab, 2020, 105(1):dgz019. doi: 10.1210/clinem/dgz019.
doi: 10.1210/clinem/dgz019 |
[5] |
Tan Q, Shi S, Liang J, et al. Endometrial cell-derived small extracellular vesicle miR-100-5p promotes functions of trophoblast during embryo implantation[J]. Mol Ther Nucleic Acids, 2021, 23:217-231. doi: 10.1016/j.omtn.2020.10.043.
doi: 10.1016/j.omtn.2020.10.043 |
[6] |
Stepanjuk A, Koel M, Pook M, et al. MUC20 expression marks the receptive phase of the human endometrium[J]. Reprod Biomed Online, 2019, 39(5):725-736. doi: 10.1016/j.rbmo.2019.05.004.
doi: S1472-6483(19)30538-3 pmid: 31519421 |
[7] |
Gou J, Hu T, Li L, et al. Role of epithelial-mesenchymal transition regulated by twist basic helix-loop-helix transcription factor 2 (Twist2) in embryo implantation in mice[J]. Reprod Fertil Dev, 2019, 31(5):932-940. doi: 10.1071/RD18314.
doi: 10.1071/RD18314 |
[8] |
汪沙, 段华, 郑德璇. 上皮-间质转化在子宫腺肌病中作用的研究进展[J]. 国际妇产科学杂志, 2020, 47(1):92-96. doi: 10.3969/j.issn.1674-1870.2020.01.022.
doi: 10.3969/j.issn.1674-1870.2020.01.022 |
[9] |
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, et al. The role of mesenchymal-epithelial transition in endometrial function[J]. Hum Reprod Update, 2019, 25(1):114-133. doi: 10.1093/humupd/dmy035.
doi: 10.1093/humupd/dmy035 pmid: 30407544 |
[10] |
Cui D, Sui L, Han X, et al. Aquaporin-3 mediates ovarian steroid hormone-induced motility of endometrial epithelial cells[J]. Hum Reprod, 2018, 33(11):2060-2073. doi: 10.1093/humrep/dey290.
doi: 10.1093/humrep/dey290 |
[11] |
Lin X, Chai G, Wu Y, et al.RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1):2065. doi: 10.1038/s41467-019-09865-9.
doi: 10.1038/s41467-019-09865-9 |
[12] |
Ran J, Yang HH, Huang HP, et al. ZEB1 modulates endometrial receptivity through epithelial-mesenchymal transition in endometrial epithelial cells in vitro[J]. Biochem Biophys Res Commun, 2020, 525(3):699-705. doi: 10.1016/j.bbrc.2020.02.153.
doi: 10.1016/j.bbrc.2020.02.153 |
[13] |
Li Z, Gou J, Jia J, et al. MicroRNA-429 functions as a regulator of epithelial-mesenchymal transition by targeting Pcdh8 during murine embryo implantation[J]. Hum Reprod, 2015, 30(3):507-518. doi: 10.1093/humrep/dev001.
doi: 10.1093/humrep/dev001 |
[14] |
Liu W, Niu Z, Li Q, et al. MicroRNA and Embryo Implantation[J]. Am J Reprod Immunol, 2016, 75(3):263-271. doi: 10.1111/aji.12470.
doi: 10.1111/aji.12470 |
[15] |
Li L, Gou J, Yi T, et al. MicroRNA-30a-3p regulates epithelial-mesenchymal transition to affect embryo implantation by targeting Snai2[J]. Biol Reprod, 2019, 100(5):1171-1179. doi: 10.1093/biolre/ioz022.
doi: 10.1093/biolre/ioz022 |
[16] |
Akbar R, Ullah K, Rahman TU, et al. miR-183-5p regulates uterine receptivity and enhances embryo implantation[J]. J Mol Endocrinol, 2020, 64(1):43-52. doi: 10.1530/JME-19-0184.
doi: 10.1530/JME-19-0184 |
[17] |
Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer[J]. Eur J Cancer, 2015, 51(12):1638-1649. doi: 10.1016/j.ejca.2015.04.021.
doi: 10.1016/j.ejca.2015.04.021 |
[18] |
Shariati M, Niknafs B, Seghinsara AM, et al. Administration of dexamethasone disrupts endometrial receptivity by alteration of expression of miRNA 223, 200a, LIF, Muc1, SGK1, and ENaC via the ERK1/2-mTOR pathway[J]. J Cell Physiol, 2019, 234(11):19629-19639. doi: 10.1002/jcp.28562.
doi: 10.1002/jcp.28562 |
[19] |
Shokrzadeh N, Alivand MR, Abedelahi A, et al. Calcitonin administration improves endometrial receptivity via regulation of LIF, Muc-1 and microRNA Let-7a in mice[J]. J Cell Physiol, 2019, 234(8):12989-13000. doi: 10.1002/jcp.27969.
doi: 10.1002/jcp.27969 pmid: 30536902 |
[20] |
Salker M, Teklenburg G, Molokhia M, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss[J]. PLoS One, 2010, 5(4):e10287. doi: 10.1371/journal.pone.0010287.
doi: 10.1371/journal.pone.0010287 |
[21] |
Xu Y, Lu J, Wu J, et al. HOXA10 co-factor MEIS1 is required for the decidualization in human endometrial stromal cell[J]. J Mol Endocrinol, 2020, 64(4):249-258. doi: 10.1530/JME-19-0100.
doi: 10.1530/JME-19-0100 |
[22] |
Alauddin M, Salker MS, Umbach AT, et al. Annexin A7 Regulates Endometrial Receptivity[J]. Front Cell Dev Biol, 2020, 8:770. doi: 10.3389/fcell.2020.00770.
doi: 10.3389/fcell.2020.00770 pmid: 32923441 |
[23] |
Zhou M, Xu H, Zhang D, et al. Decreased PIBF1/IL6/p-STAT3 during the mid-secretory phase inhibits human endometrial stromal cell proliferation and decidualization[J]. J Adv Res, 2021, 30:15-25. doi: 10.1016/j.jare.2020.09.002.
doi: 10.1016/j.jare.2020.09.002 |
[24] |
Tong J, Yang J, Lv H, et al. Dysfunction of pseudogene PGK1P2 is involved in preeclampsia by acting as a competing endogenous RNA of PGK1[J]. Pregnancy Hypertens, 2018, 13:37-45. doi: 10.1016/j.preghy.2018.05.003.
doi: 10.1016/j.preghy.2018.05.003 |
[25] |
Ma LN, Huang XB, Muyayalo KP, et al. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy?[J]. Front Immunol, 2020, 11:279. doi: 10.3389/fimmu.2020.00279.
doi: 10.3389/fimmu.2020.00279 |
[26] |
Liu H, Huang X, Mor G, et al. Epigenetic modifications working in the decidualization and endometrial receptivity[J]. Cell Mol Life Sci, 2020, 77(11):2091-2101. doi: 10.1007/s00018-019-03395-9.
doi: 10.1007/s00018-019-03395-9 |
[27] |
Kim TH, Yoo JY, Choi KC, et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility[J]. Sci Transl Med, 2019, 11(474):eaaf7533. doi: 10.1126/scitranslmed.aaf7533.
doi: 10.1126/scitranslmed.aaf7533 |
[28] |
Long J, Yang CS, He JL, et al. FOXO3a is essential for murine endometrial decidualization through cell apoptosis during early pregnancy[J]. J Cell Physiol, 2019, 234(4):4154-4166. doi: 10.1002/jcp.27167.
doi: 10.1002/jcp.27167 |
[29] |
Kelleher AM, Behura SK, Burns GW, et al. Integrative analysis of the forkhead box A2 (FOXA2) cistrome for the human endometrium[J]. FASEB J, 2019, 33(7):8543-8554. doi: 10.1096/fj.201900013R.
doi: 10.1096/fj.201900013R pmid: 30951376 |
[30] |
Quenby S, Vince G, Farquharson R, et al. Recurrent miscarriage: a defect in nature′s quality control?[J]. Hum Reprod, 2002, 17(8):1959-1963. doi: 10.1093/humrep/17.8.1959.
doi: 10.1093/humrep/17.8.1959 |
[1] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[2] | LI Heng-bing, YUAN Hai-ning, ZHANG Yun-jie, ZHANG Jiang-lin, GUO Zi-zhen, SUN Zhen-gao. Advances in Exosome-Based Therapy for Chronic Endometritis by Modulating the Immune Microenvironment [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 72-78. |
[3] | WANG Jing, WANG Yong-hong. Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia: A Review [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 88-93. |
[4] | ZHONG Xiao-ying, LIU Hai-yuan. Composition and Research Progress of the Endometrial Microbiota [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 481-485. |
[5] | QI Qi, GAO Ya-ting, XU Fei-xu. Role of E-Cadherin in Peritoneal Implantation and Metastasis of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 210-214. |
[6] | LI Ying-tao, HUANG Xiao-wu. Evolution and Advances in Endometrial Sampling [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 105-109. |
[7] | LIU Hui-xing, BIN Li, ZHU Xue-hong, LIN Zhong, LU Li-miao. Research Progress of Estrogen Adjuvant Therapy after Transcervical Resection of Adhesions [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 618-622. |
[8] | REN Shu-qing, SONG Dian-rong, ZHANG Ji-wen, HUAI Qi-juan, ZHAO Lin, ZHANG Wei. Study on the Characteristics of Intrauterine Microbiota in Infertile Women with Poor Endometrial Receptivity [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 704-710. |
[9] | ZHANG Xiao-lei, DENG Dan-ni, GAO Yan, ZHANG Hui-min. Application of Organoids in Research of Endometrium and Endometrium-Related Diseases [J]. Journal of International Obstetrics and Gynecology, 2023, 50(4): 446-449. |
[10] | LIU Yin, LU Di, SONG Dian-rong. The Effect of Insulin Resistance on Reproductive Endocrine and Metabolism of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 190-195. |
[11] | CHEN Zhi-rou, WANG Xin-tao, HU Qun-chao, ZHU Hai-yan. Cervical High-Grade Squamous Intraepithelial Lesions Involving the Endometrium and Ovary: A Case Report and Literature Review [J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 237-240. |
[12] | WANG Xiu-zhu, CHEN Xue-mei, LIU Xue-mei. Research Progress in Pathogenesis and Diagnosis of Chronic Endometritis [J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 102-108. |
[13] | REN Shu-qing, GUO Jie, SONG Dian-rong. Research Progress of Intrauterine Flora Regulating Intrauterine Microenvironment and Affecting Embryo Implantation [J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 565-569. |
[14] | MA Xing, HUANG Wu-nan, LIU Wen-wen, LI Ling, LIU Chang. The Role of Endometrial and Intestinal Microbiome in the Pathogenesis of Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 366-370. |
[15] | ZHANG Shu-rong, YANG Chun-run, SHAO Xu-ping, ZOU Yong-hui, LI Chang-zhong. Application of Stem Cells in Intrauterine Adhesion Treatment [J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 466-471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||