Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (1): 111-115.doi: 10.12280/gjfckx.20210456
• Gynecological Disease & Related Research:Review • Previous Articles Next Articles
Received:
2021-05-17
Published:
2022-02-15
Online:
2022-03-02
Contact:
KONG Xian-chao
E-mail:xckong2012@163.com
XIA Rui-qi, KONG Xian-chao. Application of 3D Bioprinted Endometrial Regenerative Cell Biological Scaffold in Intrauterine Adhesions[J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 111-115.
Add to citation manager EndNote|Ris|BibTeX
打印技术 | 材料黏度(mPa/s) | 打印速度 | 细胞活力 | 费用 | 细胞密度 |
---|---|---|---|---|---|
喷墨式生物打印[ | 3.5~12 | 快 | >85% | 低 | 低,<106个细胞/mL |
挤出式生物打印[ | 30~>6×107 | 中等 | 40%~80% | 中等 | 高,细胞球状体 |
激光辅助生物打印[ | 1~300 | 慢 | >95% | 高 | 中等,108个细胞/mL |
打印技术 | 材料黏度(mPa/s) | 打印速度 | 细胞活力 | 费用 | 细胞密度 |
---|---|---|---|---|---|
喷墨式生物打印[ | 3.5~12 | 快 | >85% | 低 | 低,<106个细胞/mL |
挤出式生物打印[ | 30~>6×107 | 中等 | 40%~80% | 中等 | 高,细胞球状体 |
激光辅助生物打印[ | 1~300 | 慢 | >95% | 高 | 中等,108个细胞/mL |
[1] |
Salama NM, Zaghlol SS, Mohamed HH, et al. Suppression of the inflammation and fibrosis in Asherman syndrome rat model by mesenchymal stem cells: histological and immunohistochemical studies[J]. Folia Histochem Cytobiol, 2020, 58(3):208-218. doi: 10.5603/FHC.a2020.0024.
doi: 10.5603/FHC.a2020.0024 |
[2] |
Du H, Naqvi H, Taylor HS. Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium[J]. Stem Cells Dev, 2012, 21(18):3324-3331. doi: 10.1089/scd.2011.0193.
doi: 10.1089/scd.2011.0193 |
[3] |
Benor A, Gay S, DeCherney A. An update on stem cell therapy for Asherman syndrome[J]. J Assist Reprod Genet, 2020, 37(7):1511-1529. doi: 10.1007/s10815-020-01801-x.
doi: 10.1007/s10815-020-01801-x |
[4] |
Monsef F, Artimani T, Alizadeh Z, et al. Comparison of the regenerative effects of bone marrow/adipose-derived stem cells in the Asherman model following local or systemic administration[J]. J Assist Reprod Genet, 2020, 37(8):1861-1868. doi: 10.1007/s10815-020-01856-w.
doi: 10.1007/s10815-020-01856-w |
[5] |
Jiang X, Li X, Fei X, et al. Endometrial membrane organoids from human embryonic stem cell combined with the 3D Matrigel for endometrium regeneration in asherman syndrome[J]. Bioact Mater, 2021, 6(11):3935-3946. doi: 10.1016/j.bioactmat.2021.04.006.
doi: 10.1016/j.bioactmat.2021.04.006 |
[6] |
Kikano E, Grosse Hokamp N, Ciancibello L, et al. Utility of virtual monoenergetic images from spectral detector computed tomography in improving image segmentation for purposes of 3D printing and modeling[J]. 3D Print Med, 2019, 5(1):1. doi: 10.1186/s41205-019-0038-y.
doi: 10.1186/s41205-019-0038-y pmid: 30659415 |
[7] |
Zadpoor AA, Malda J. Additive Manufacturing of Biomaterials, Tissues, and Organs[J]. Ann Biomed Eng, 2017, 45(1):1-11. doi: 10.1007/s10439-016-1719-y.
doi: 10.1007/s10439-016-1719-y pmid: 27632024 |
[8] |
Mishra A, Srivastava V. Biomaterials and 3D printing techniques used in the medical field[J]. J Med Eng Technol, 2021, 45(4):290-302. doi: 10.1080/03091902.2021.1893845.
doi: 10.1080/03091902.2021.1893845 |
[9] |
Tse C, Smith PJ. Inkjet Printing for Biomedical Applications[J]. Methods Mol Biol, 2018, 1771:107-117. doi: 10.1007/978-1-4939-7792-5_9.
doi: 10.1007/978-1-4939-7792-5_9 |
[10] |
Hakobyan D, Kerouredan O, Remy M, et al. Laser-Assisted Bioprinting for Bone Repair[J]. Methods Mol Biol, 2020, 2140:135-144. doi: 10.1007/978-1-0716-0520-2_8.
doi: 10.1007/978-1-0716-0520-2_8 pmid: 32207109 |
[11] |
Malda J, Visser J, Melchels FP, et al. 25th anniversary article: Engineering hydrogels for biofabrication[J]. Adv Mater, 2013, 25(36):5011-5028. doi: 10.1002/adma.201302042.
doi: 10.1002/adma.201302042 |
[12] |
Ji S, Guvendiren M. Complex 3D bioprinting methods[J]. APL Bioeng, 2021, 5(1):011508. doi: 10.1063/5.0034901.
doi: 10.1063/5.0034901 |
[13] |
Gao G, Schilling AF, Yonezawa T, et al. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells[J]. Biotechnol J, 2014, 9(10):1304-1311. doi: 10.1002/biot.201400305.
doi: 10.1002/biot.201400305 |
[14] |
Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnol Adv, 2016, 34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011.
doi: 10.1016/j.biotechadv.2015.12.011 |
[15] |
Wang W, Jin S, Ye K. Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds[J]. Stem Cells Dev, 2017, 26(6):394-404. doi: 10.1089/scd.2016.0115.
doi: 10.1089/scd.2016.0115 |
[16] |
Mahendiran B, Muthusamy S, Sampath S, et al. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review[J]. Int J Biol Macromol, 2021, 183:564-588. doi: 10.1016/j.ijbiomac.2021.04.179.
doi: 10.1016/j.ijbiomac.2021.04.179 pmid: 33933542 |
[17] |
Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population[J]. J Transl Med, 2007, 5:57. doi: 10.1186/1479-5876-5-57.
doi: 10.1186/1479-5876-5-57 |
[18] |
Chen L, Qu J, Xiang C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine[J]. Stem Cell Res Ther, 2019, 10(1):1. doi: 10.1186/s13287-018-1105-9.
doi: 10.1186/s13287-018-1105-9 |
[19] |
Tan J, Li P, Wang Q, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman′s syndrome[J]. Hum Reprod, 2016, 31(12):2723-2729. doi: 10.1093/humrep/dew235.
doi: 10.1093/humrep/dew235 |
[20] |
Azizi R, Aghebati-Maleki L, Nouri M, et al. Stem cell therapy in Asherman syndrome and thin endometrium: Stem cell- based therapy[J]. Biomed Pharmacother, 2018, 102:333-343. doi: 10.1016/j.biopha.2018.03.091.
doi: 10.1016/j.biopha.2018.03.091 |
[21] |
Sun H, Lu J, Li B, et al. Partial regeneration of uterine horns in rats through adipose-derived stem cell sheets[J]. Biol Reprod, 2018, 99(5):1057-1069. doi: 10.1093/biolre/ioy121.
doi: 10.1093/biolre/ioy121 |
[22] |
Alawadhi F, Du H, Cakmak H, et al. Bone Marrow-Derived Stem Cell (BMDSC) transplantation improves fertility in a murine model of Asherman′s syndrome[J]. PLoS One, 2014, 9(5):e96662. doi: 10.1371/journal.pone.0096662.
doi: 10.1371/journal.pone.0096662 |
[23] |
Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman′s syndrome and endometrial atrophy: a pilot cohort study[J]. Hum Reprod, 2016, 31(5):1087-1096. doi: 10.1093/humrep/dew042.
doi: 10.1093/humrep/dew042 |
[24] |
Zhang J, Wehrle E, Rubert M, et al. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors[J]. Int J Mol Sci, 2021, 22(8):3971. doi: 10.3390/ijms22083971.
doi: 10.3390/ijms22083971 |
[25] |
Zhang YS, Yue K, Aleman J, et al. 3D Bioprinting for Tissue and Organ Fabrication[J]. Ann Biomed Eng, 2017, 45(1):148-163. doi: 10.1007/s10439-016-1612-8.
doi: 10.1007/s10439-016-1612-8 |
[26] |
Wang X, Dai X, Zhang X, et al. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition[J]. J Biomed Mater Res A, 2019, 107(2):383-391. doi: 10.1002/jbm.a.36549.
doi: 10.1002/jbm.a.36549 |
[27] |
Wang X, Li X, Dai X, et al. Bioprinting of glioma stem cells improves their endotheliogenic potential[J]. Colloids Surf B Biointerfaces, 2018, 171:629-637. doi: 10.1016/j.colsurfb.2018.08.006.
doi: 10.1016/j.colsurfb.2018.08.006 |
[28] |
Ji W, Hou B, Lin W, et al. 3D Bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium[J]. Acta Biomater, 2020, 116:268-284. doi: 10.1016/j.actbio.2020.09.012.
doi: 10.1016/j.actbio.2020.09.012 |
[29] |
Zheng SX, Wang J, Wang XL, et al. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells[J]. Int J Mol Med, 2018, 41(4):2201-2212. doi: 10.3892/ijmm.2018.3415.
doi: 10.3892/ijmm.2018.3415 |
[30] |
Ferlin KM, Prendergast ME, Miller ML, et al. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation[J]. Acta Biomater, 2016, 32:161-169. doi: 10.1016/j.actbio.2016.01.007.
doi: 10.1016/j.actbio.2016.01.007 |
[1] | ZHANG Yong-qing, CHEN Zheng-yun, CHEN Lu-ping, YAN Guo-hui, CHEN Dan-qing. Two Cases of Term Angular Pregnancy Identified during Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 153-157. |
[2] | SUN Lu, CHEN Ran-ran, SONG Dian-rong. Progress in Evaluating Embryotoxicity of Compounds Based on Human Embryonic Stem Cell Model in Vitro [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 707-711. |
[3] | SHI Li-juan, YU Xiao-chuan, WANG Hua-li. Application and Progress of Adipose Derived Mesenchymal Stem Cell Exosomes in Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 274-278. |
[4] | GUO Shi-wei, SUN Jing-li, CHEN Zhen-yu, LIU Sen. Clinical Application of Stem Cell-Derived Exosomes in Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 279-283. |
[5] | SHI Ming, SUN Ming-hui, YANG Wei-wei, HUANG Hui-hua, ZHANG Chang-lin, David YB Deng. Application of 3D Printed Hydrogel Stents in Prevention and Treatment of Intrauterine Adhesion [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 290-296. |
[6] | GAO Yue-wen, LI Chang-zhong. Research Progress of Menstrual Blood-Derived Mesenchymal Stem Cells in the Treatment of Premature Ovarian Insufficiency [J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 161-164. |
[7] | ZHANG Shu-rong, YANG Chun-run, SHAO Xu-ping, ZOU Yong-hui, LI Chang-zhong. Application of Stem Cells in Intrauterine Adhesion Treatment [J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 466-471. |
[8] | YE Jing-xuan, LI Yong. Application of Anti-Adhesion Materials in Intrauterine Adhesions [J]. Journal of International Obstetrics and Gynecology, 2022, 49(2): 161-165. |
[9] | LIU Bo-tong, LIU Dong-zhe, CHEN Xiu-hui. Progress in Clinical Treatment of Menstrual Blood Stem Cell-Derived Exosomes [J]. Journal of International Obstetrics and Gynecology, 2021, 48(5): 592-596. |
[10] | JIANG Wen-jun, HUANG Xiao-wu. Methods and Research Advances in Prevention of the Recurrence of IUA after Hysteroscopic Adhesiolysis [J]. Journal of International Obstetrics and Gynecology, 2021, 48(4): 409-414. |
[11] | LI Wen-zhu, XU Bu-fang. Research Advance of Biocomposite Materials in Promoting Endometrial Regeneration [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 290-294. |
[12] | WANG Sha, GUO Zheng-chen, TANG Yi-qun, DUAN Hua. Effects of Human Umbilical Cord Mesenchymal Stem Cells on the Proliferation and Differentiation of Endometrium in Rats with Intrauterine Adhesions [J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 309-313. |
[13] | XU Qian, WANG Yi-yi, ZANG Chun-yi. Advances in the Clinical Etiology, Diagnosis and Therapy of Intrauterine Adhesions [J]. Journal of International Obstetrics and Gynecology, 2021, 48(2): 224-229. |
[14] | ZHANG Pan-pan, HAO Li-juan. Application and Status of Platelet-Rich Plasma in Intrauterine Adhesion [J]. Journal of International Obstetrics and Gynecology, 2020, 47(5): 495-497. |
[15] | MA Yuan-yuan, WANG Wen-li, YE Hong. Risk Factors of Intrauterine Adhesions Complicated with Retained Products of Conception [J]. Journal of International Obstetrics and Gynecology, 2020, 47(5): 512-515. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||